MUHUCTEPCTBO OBPA30BAHNA U HAYKU POCCHUMCKOMN ®EJIEPAIIAN
(denepanbHOE rocyAapCTBEHHOE OI0JKETHOE 00pa30BaTENbHOE YUPEKICHHUE

BBICIIIETO 00pa30BaHUs
«YJIbSIHOBCKHUM 'OCYJAPCTBEHHBIV TEXHUUECKHU YHUBEPCUTET>»

Go For IT English Reading

YYEBHOE ITOCOBUE
M0 AHTJIUACKOMY SI3BIKY
st 6akanaBpoB 1—2 kypca
dakyiabTeTa HHPOPMALIMOHHBIX CUCTEM
Y TEXHOJIOTHH O4YHON (hOpPMBI OOyUEHUS

CocraBurenu: JI. B. KopyxoBa
H. H. HoBocenbliesa

Y IbSIHOBCK
ValI'TY
2016

YIAK 811.11(075.8)
bBbK 81.2 Aurn g7
G 69

G 69

Peuenzentsl: Kadenpa repmanckoit punosorun YepHUTOBCKOTO HAITMOHAIb-
HOro mnenarorundeckoro ynusepcutera um. T.I. IlleBueHko
MopozoBa M. A., KaHI. men. HayK, JOLUEHT Kadeapsl
WHOCTPAHHBIX SI3bIKOB YIIBSIHOBCKOT'O MHCTUTYTA IPa)kKIaHCKOMN
aBMallMy WM. TJ1aBHOTO Mapiana apuauuu b. 1. byraesa

VYTBEepKICHO peAaKIIMOHHO-U3aTEIbCKUM COBETOM YHHUBEPCUTETA
B KayecTBe y4eOHOro nocoous

Go For IT English Reading : yue6HOe mocobue 1o aHTIHHCKOMY
s3BIKY ISl OakanaBpoB 1—2 kypca daxynbrera WHGOPMAITMOHHBIX
CUCTEeM M TEXHOJIOTUH o4HOM ((opMbl 0OyueHHss / COCT.
JI. B. KopyxoBa, H. H. HoBocenbueBa. — YnbsaHoBck : Yal'TV,
2016. - 168 c.

ISBN 978-5-9795-1608-0

[Tocobue pa3zpaboTaHO B COOTBETCTBHHM C TpEOOBaHUSMM CTaHAapTa
BBICIIETO PO(ECCHOHAIBHOTO MPENOoIaBaHusl U OPUSHTUPOBAHO HAa O0yUYCHHE
CTYJIEHTOB NpOo(eCcCHOHAIbHO-OPUEHTUPOBAHHOMY AaHIJIMICKOMY SI3bIKY B
pamkax Kypca. Marepuas 1nocoOusi, OCHOBaHHBI Ha COBPEMEHHBIX
ayTEHTHUYHBIX TEKCTaX 3apyOeKHbIX aBTOPOB, MPEICTABICHHbII B OCHOBHOM
O70Ke, 1aeT BO3MOXKHOCTh (DOPMHU-POBAHUS U COBEPIICHCTBOBAHUS HABBHIKOB
YTEHHUs] U TEpeBOJla TEKCTOB MO CIELHMAIBHOCTH HAa WHOCTPAHHOM S3bIKE,
YCBOEHUIO 0a30BOr0 TEPMUHOJIOIMUECKOT0 KOpIIyca.

Pabora noarorosnena Ha kadpeape «Mnocrpannbie s3pikm» Yl TV,

IleuaTaercs B aBTOPCKOM pEIaKLUN.

VK 811.11(075.8)
BBK 81.2 Aura a7

© Kopyxosa JI. B. HoBocensuena H. H.,
cocTapienue, 2016

ISBN 978-5-9795-1608-0 © Odopmnenue. YaI'TY, 2016

COILEPKAHUE

TIPEJIACTIOBHE ..o 4
YACTD 1: O HAYYHO-TEXHUYECKOM ITEPEBOJIEooueee.... 6
YACTD 2: ®PA3BI UL [TEPECKABA TEKCTA ..., 9
YACTbD 3: TEKCTHI JJISI BHEAYJIUTOPHOI'O YTEHUS 10
YACTD 4: TTIOCCAPHI ..o 159
BUBJIMOT PAOUYECKUIM CITUCOK ..., 167

HPEANCJIOBHUE

JloTmoTHUTEIPHOE JAOMAIIIHEE YTCHHWE WJIM BHEAyJUTOPHOE UYTCHUE —
BUJI Y4€OHOUM JEATENbHOCTH, KOTOPBIM TpeOyeT OT CTyJAeHTa CaMOCTO-
ATEIBHOCTA. JTa CaMOCTOATEIBHOCTh TIPOSBIIETCS HE TOJBKO B
opraHu3anuy padoThl, HO U B BBIOOpPE TEKCTa, KOTOPHIi, B CBOIO 04Yepe/ib, U
BBI3BIBAECT OMNPEACIICHHYIO CII0KHOCTh. TeMaThKa TEKCTOB IO JOMOJ-
HUTEIHLHOMY JIOMAITHEMY YTEHHIO — MPO(HEeCCHOHATIbHO-OPUEHTUPOBAHHAS.
Martepuansl poPecCHOHANTBHO-OPUEHTUPOBAHHON TeMaTUKU — 3TO
TEKCTBI, TECHO CBSI3aHHBIC CO CICIMAIBHOCTHIO. Kak oTMeuaroT MHOTHE
WCCJIeIOBAaTeNIM, YTEHWE TEKCTOB HA AHTJIMHCKOM S3bIKE — OJWH U3
CIIOCOOOB HM3Yy4YEHUSI MHOCTPAHHOTO s3bIKa. [Ipm mpaBUIBRHOM TOI00pE
OpUTHUHAJIBHBIE TEKCTHI MOTYT CITIOCOOCTBOBATh (POPMHUPOBAHUIO SI3BIKOBOM
KOMIIETCHIINM crenuainucta. B atoil cBs3um mna sddexTuBHON opra-
HU3AIMU CaMOCTOSTEILHON paboThl CTYIEHTOB 1-2 KypcoB (akyibTera
MH(OPMAIIMOHHBIX CHUCTEM M TEXHOJOTHUW MO BHEAYJAUTOPHOMY YTEHUIO
ObLJIO COCTaBIEHO Y4yeOHOEe TMOocoOMe, BKIIOYAIONIEe ayTECHTUYHBIC
podeCcCHOHATBPHO-OPHUEHTUPOBAHHBIC TEKCTHI.

['maBHOM 11€1610 OOYYCHUS YTSHUIO JTUTEPATYPHI MO CIIEHAITBHOCTH B
HES3BIKOBOM BY3€ SIBJISIETCS TOMy4YeHHE WH(POpManuu W3 TEKCTOB Ha
WHOCTPAHHOM s3bIKe. UTeHWe IMTepaTypbl Ha WHOCTPAHHOM SI3BIKE
MO3BOJISIET COBPEMEHHOMY CHEIUAIKNCTY HAYYUThCS CaAMOCTOSITEIHHO
paboTaTth C WHOS3BIYHBIMU HAYYHO-TEXHUYECKUMH TEKCTaMHU M CBOEBpE-
MEHHO MOJIy4aTh HOBYIO MH(pOpPMAIMIO B 00JACTU CBOEU CHEIUATbHOCTH.
BOJBIIMHCTBO CTYJEHTOB TakKe MPU3HAIOT HEOOXOJIUMOCTh HCIONb-
30BaHMS WHOCTPAHHOH JIUTEpPATyphl MPU MOATOTOBKE KYPCOBBIX IIPOCKTOB,
JUIUIOMHBIX pa0oT, npu padore B UHTepHere. Kpome Toro, mianoMmepHoe
JIOMaITHee YTEHUE SIBJSETCS BaXKHBIM CPEJICTBOM YBEJIMUCHHSI CIOBAPHOTO
3armaca ¥ pa3BUTHS HaBBIKOB YCTHOW PEYH.

BreaynutopHoe dYTeHHE KaK CaMOCTOSITENIbHBIA achekT ydeOHOM
TUCUUIITUHBL «ITHOCTpaHHBIM S3BIK» CIOCOOCTBYET 0oJjiee MPOYHOMY
(GbOopMHUPOBAHHIO BCEX BUJIOB KOMMYHHUKATUBHOW KOMIIETEHITUY.

OcHOBHBIMH ~ QYHKIHMSMH BHEAYAUTOPHOTO YTCHHUS SIBJISIOTCS:
oOpa3oBarebHasl, pa3BUBAOIIAsl, BOCIIUTATEIbHAS U TTpaKTHYECKas:

« OOpa3oBarenbHass (QYHKIMS BHOCHT CYIIECTBEHHBIM BKJIaJ B
MOBBINICHUE 00Pa30BaHUsI CTYICHTOB, PACIIUPSET KPYTo30p.

« PazBuBatomasi ¢GyHKIMS CIMOCOOCTBYET Pa3BUTHUIO KPUTUUECKOTO
MBIIJICHUS, KOTHUTHUBHBIX CIOCOOHOCTEH CTYJEHTOB, IIEHHOCTHBIX
OpPUEHTHUPOB.

« BociutatenpHas QyHKIMS BHEAyTUTOPHOTO YTCHHS 3aKIIOYASTCS B
BOCITUTAHUHU CTYJCHTOB B JyX€ MHpPA, TOJIEPAHTHOCTH, TYMaHHOTO
MEKHAITMOHAJILHOT'O OOIIICHHUS.

« [IpakTrueckas GyHKIMS BHEAYIUTOPHOTO YTEHHS 3aKIIOYAcTCS B
pPa3BUTHM KOMMYHHMKAaTHBHBIX YMEHHUW 4YTEHHs Kak oco0oro Bujaa
YEeJIOBEUYECKON AEATEILHOCTH.

BreaynmuropHOe YTEHHE OKa3bIBaeT CYIIECTBEHHOE BO3JCHCTBHE Ha
JUIHOCTHh 00y9aeMoro, ero HHTEJUICKTYalIbHYI0, SMOIIMOHAILHYIO U MOTH-
BallMOHHBIE CEephl W MPEATNoaraeT pa3IndyHOTO BUAA PaOdOTy C TEKCTOM
(MHTEpIPETAINIO, COOTHECEHUE COJICPKAHMUS CO CBOMM JIMYHBIM OIIBITOM,
YMEHHE apTyMEHTHUPOBAHHO U3JIOKUTHh MOHUMAaHKUE TIPOOIEMBI U .).

YACTD 1: O HAYYHO-TEXHUYECKOM IIEPEBOJIE

[lepeBog — 3TO BBIpaXEHHWE TOTO, YTO YK€ OBUIO BBIPAKEHO Ha
OJTHOM SI3bIKE CpeJCTBAMHU APYroro s3bika. CyTh TEXHHYECKOTO TEPEeBoIa
¥ OCHOBHOUM €ro OCOOEHHOCTBIO SBJISIETCS TOJHOE MOHWMAHHWE BOTIPOCA H
OOBSICHEHUE €r0 JJOCTYIHBIM SI3IKOM C COOJIIOJICHHEM BCEX OCOOEHHOCTEU
U TEXHUYECKUX TOHKOCTEHW MaTepuasa, KOTOPhIN MOMJICKUT MIEPEBOY.

[lepeBog — HCKyCcCTBO, TpeOyrollee YMEHHS pacCpeoTOYUTh
BHUMAaHHUE HACTOJIbKO, YTOOBI, 3aHMMAasiCh YaCTHOCTSIMHU, BCErja UMETh B
BUJTy 1IJI0€, T. €. BeCh TeKCT. Henmb3s M307MpoBaHHO MEPEBOJIUTHL CIIOBA,
dbpa3y 3a ¢pazoi, IpeaioKEeHUE 3a MPEAIOKESHUEM, T. €. HelIb3s JIeJIaTh
TO, YTO Ha3bIBaeTCs OYKBAJIbHBIM TNepeBoJOM. OTHAENbHBIE CJIOBAa BHE
KOHTEKCTa HE HWMEIOT CMBICIa, T.K. CJIOBa MHOTO3Ha4Hbl. HeymeHwue
OTBJICUbCSI OT KOHKPETHBIX ()OPM M HEYMEHHE TI0JIb30BATHCS KOHTEKCTOM —
TUMAYHAS OIIMOKA MPHU ITEPEBOJIE.

HemnepeBoguMbIX OpUTHHAIOB HET, T. K. TO, YTO MOHO BBIPAa3UTh Ha
OJIHOM $I3BIKE, MOXHO BBIpAa3UTh W Ha JIOOOM ApyroMm. EcTh TONBKO
TPYJIHOCTH, CBSI3aHHBIC C HEJIOCTATOYHBIMU 3HAHHMSAMHU JINOO S3BIKA, JINOO
CyIllecTBa MpeIMeTa.

Cnenyer OTMETHTH CHAEAYIOIIME OCOOCHHOCTH CTHWISA HAay4YHO-
TEXHUYECKOTO TMepeBojia: HHPOPMAITMOHHAS COAEPKATEIBHOCTh, CTPOTas
MOCJIEIOBATENILHOCTD U JIOTHYHOCTh BCEX COCTABJISIFOIIUX MPEICTABISIEMOM
aBTOPOM HJeH, OOBEKTUBHOCTh B KOHCTAaTallMM HaydHOro (akxra,
MOHSTHOCTH M3JIaraeMoro MaTepuaia B MEepBYIO Ouepe/b IS CIeHaINCTa
B 3TOM oOnactu. HayuyHO-TeXHMUYECKUI TEKCT MPEXKAE BCETO OTINYAETCA
CYIIECTBOM H3JlaraeMoil WHGOpMaIuu, TAe ocolas poib MPUHAICKHAT
TEPMUHOJIOTUM, HCHOJIb3yeEMOM B Iporecce nepeBona. I[lockonbky
HAyYHBIA TEPMUH OTpakaeT OMpeJeieHHOe HaydHOEe IOHSATHE, TO ATOT
TEPMUH OTJIUYACTCS OT OOBIYHBIX CJOB OOIIECHAIIMOHAIBLHOTO $3bIKA, HO
00s3aTEIPHO JOJDKEH OTpaKaTh pealbHble OOBEKTHI W SBICHUS U
yCTaHABIMBATh OJIHO3HAYHOE TTOHMMAHUE SIBJICHUS CHEIUATNCTaMU B 3TOM
obnactu. [loaTOMy TepMUH, UCMOIB3YEMBIN TIPU MIEPEBOAE, NOHKEH OBITH
TOYHBIM, HWMETh CTPOTO OIPEACICHHOEC 3HauYeHWEe M BXOAWTh B TakK
Ha3bIBAEMOE MMOHUMAEMOE YHTATEIIeM «TEPMHHOJIOTHYECKOE IT0JIe», OBITH
AJIEMEHTOM OOIIed TEPMUHOJOTMYECKOM CHUCTEMBI TIPU OOBSICHEHUU
CYIIIECTBa UCCIIEyEeMOro BOIpoca.

TepMuH — 3TO CIIOBO WJIM CJIIOBOCOYETaHUE, KOTOPOE MOXKET HUMETh
OTJIMYHOE OT OOMXOJHOTO 3HAa4Y€HWE B 3aBUCHUMOCTU OT OOJACTH HAyKH
U TEXHUKH, B KOTOpPOM OHO ymnoTpednsercs. TepMUH MOXKET ObITh

6

IPOCTBIM, COCTOSINMM M3 OJHOro ciioBa (SWitCh «BBIKIIOUATEIBY)) H
CIIOKHBIM TEpPMHUHOM-CIIOBOCOYeTaHHeM (automatic switch «aBToma-
TUYCCKUH BBIKIIOUATEhy, high-speed circuit breaker «OwicTpomericTy-
IONIMIA BBIKIIOYATEIb») Hampumep, cinoBo face kak CyIlIecTBUTEIBHOE
UMeeT OOMXOJHOE 3HAYCHUE «JIUI0»; IIUPOKOE TEXHUYECKOE 3HAYCHUE
€ro — «IOBEPXHOCTH»; B FT€OMETPUHU €ro 3HAYEHUE — «TPaHb»; B CTPOU-
TEJIBHOM Jielie — «(acamay, «0OIUIIOBKaY; B TPOrPaMMUPOBAHUN — «CTUITBY.
Ho, kak 3TO eCTECTBEHHO]IS aHIJIMICKOTO s3bIKa, TO e cioBo face
MOXET BBICTYINATh KakK IJaroji; B 3TOM ClIydya€ €ro OCHOBHOE 3HAauCHHE
(OOUXOHOE 3HAYEHUE) — «CTOSTh HAMPOTUB YEro-au00»; B METAIIO-
00paboTKe 3TO TEPMHUH O3HAYAET «IUIU(OBATHY», B CTPOUTEIHHOM el —
«OTIENBIBATHY, «OOTUIIOBBIBATEY, KIIOKPHIBATHY.

CobOnrofieHue ClaeAylmMX MpPaBWI MOXKET IMOMOYb IPU TEPEBOE
TEPMUHOB.

B cnenuajJbHOM TeKCTe Kajaoe CJI0BO, Ja)Ke O4YeHb XOPOIo
3HAKOMOE, MOKET _0Ka3aThcsi _TepMHUHOM. [lepeBoas TEXHHYECKYIO
JUTEpPaTypy, OCOOEHHO 1O MaJO3HAaKOMON TeMaTuKe, HaJ0 BCerja
MOMHUTh 00 93Toil MHOro3HadyHocTH. I[lonp3ylTech mpu TMepeBoje
CHEUHATBHBIMU TEXHUYECKUMU cloBapsAMU. ClieayeT cUuTaTh HEPa3yMHOM
MOTIBITKY TEPEBOIUTH 0€3 CIIOBAps; ATO BBINIAAENIO OBl TaK K€ CTPaHHO,
KaK eciau Obl MacTep MbITaJCs HAay4YUThCcs paboTaTh 0€3 MHCTPYMEHTA.
Kak Obl HU OblIa BeHMKa MaMsTh NMEPEBOIYMKA, OH MOXET HATOIKHYTHCA
Ha HE3HAKOMBIN WJIM MAJIO3HAKOMBIA TEPMHUH WM U3BECTHBIM €EMY TEPMUH
B COBEPIIICHHO HOBOM 3HaueHHWH. [Ipy MHOTO3HAYHOCTH CJIOBA CJEIYET
OpaTb TO €ro 3HauY€HHE, KOTOPOE MPUHANICKHUT COOTBETCTBYIOIIEH
o0jacTh TeXHUKH. MOXKET OKa3aThCsA, YTO HU OJHO M3 3HAYEHUU CJIOBa,
HaWJICHHbIX BaMHU B CJIOBape, HE MOIXOJHUT, 3TO 3HAYUT, YTO HEKOTOPHIE
3HAUEHMsI CJIOBA HE 3a()MKCHUPOBAHBI B CiioBape. B Takom ciyuae BbIBECTH
U3 3aTpyJHEHUST MOXXET XOpOIlee YyBCTBO S3blKa, TaK Ha3blBacMas
S3bIKOBAs JIOTajika, HO B MIEPBYIO OYEpeab — MOHUMAaHUE TOTO, O YeM HIET
peub. [103TOMY 3HAKOMCTBO C COOTBETCTBYIOIIECH OTPACIbIO TEXHUKHU, XOTS
Obl 1O MOMYJSPHBIM MOCOOUAM WIH C TOMONIIBI0 KOHCYJIbTAIlUU
CHENHUAINCTAa, UMEET OrPOMHOE 3HAUYCHHE JIJIS MPABUILHOTO MEPEBO/IA.

Jnst co3maHusi TOYHOTO W TOCIIEIOBATENIBHOTO Mpolecca MeEPEBOaa
HEO0OXOAUMO CIIeIOBATh HECKOJIBKUM HECIOKHBIM MTpaBUIaM:

1. TlepBbiii pa3 HEOOXOAWMO BHHUMATEIBHO MNPOYUTATH TEKCT 0O€3
CJIOBApS U MOMBITATHCA MOHATH €ro. [loMHuTE, 3aMbIcen aBTOpa BBIPAKEH C
MTOMOII[BI0 BCETO TEKCTA.

2. [IpounTtaiite TEKCT BTOPOW pa3 MO OTAECIbHBIM MPEHJIOKECHUSM,
MONBITAUTECh TMOHATh CHUHTAKCHMYECKUM CTPOM W CMBICH KaXJOro
npemioxkeHus. IlepeBequre TEKCT MO MPEAJIOKEHUSIM.

3. Eciin cuHTakcuyeckui cTpol npeaoxxenus Bam HesiceH u Bol He
MOHSIA CMBICIT IPEJIOKEHUS, CAETalTe IPpaMMATHYECKUN aHAIU3:

- ONIPEACIIUTE BUJ TMPEAJIOKECHUS;

- HallIUuTe MoOIekKallee, CKa3yeMoe, BTOPOCTEIICHHBIE YIICHBL;

- BBIJICTIUTE B NPEMJIOKEHUU CMBICIOBBIE TPYMIBI, T. €. IMOJEITUTE
MPEJIOKEHUE HAa CMBICIIOBBIE OTPE3KH, TOMHS, YTO MPaBWIa MyHKTyallluu
B PYCCKOM M AHIVIMMCKOM A3BIKE PAa3JIMYHbI, U Yalle BCEr0 CMBICIOBBIC
OTPE3KH B AHTJIMICKOM TPEIIOKEHUU HE OYyIyT OTACJCHBI 3amlsTON WIn
JIPYTUM 3HAKOM MPENUHAHUS.

- €CIId TMpeUIOKEHUE CJIOKHOMOAYMHEHHOE, HaWJIWTe TIJIaBHOE W
OPUAATOYHOE MPEJIOKEeHUs], ONUpasich Ha (opMalibHbIC IPU3HAKH.

4. BolniicaTh U NEPEBECTH BCE HE3HAKOMBIE CJIOBA, MO X0y MEpeBOa
TEKCTa, YYUTHIBASE KOHTEKCT U YaCTH PEUH.

5. IlepeBoauTh TEKCT, MOMHS 00 OCOOEHHOCTSIX PYCCKOIO HAay4yHO-
TEXHUYECKOro cruisd. IlomHuTE, TIpu MepeBoJie IMOCIEAYIOLIETO
PEIIOKEHUS HEOOXOIUMO TIOCTOSIHHO YJIEPKUBATh B MaMSITH CMBICIT
NPEABIAYIIETr0, UHAYE TEPSAETCS JIOTMYECKasl CBSI3b MEXAY OTIEIbHBIMHU
PEII0KEHUSIMU.

Heob6xoaumMo MOCTOSSHHO CIEIUTh 3a TEM, YTOOBI MEXAY KakKIIoh
NOCJIEIYIOLIEH U MPEeABIIYIIEeH YacThio IEpeBoia Oblila JOruYecKasi CBA3b.

[Ipy mnepeBoje HAYYHO-TEXHUYECKHUX TEKCTOB HEOOXOIUMO
cOOJII01aTh:

« TounocTs. OO0sI3aTENBHO NTOJKEH COXPAHSATBHCS CMBICI OpHUTHHANA,
caM TIepeBOJ HE JIOJDKEH coJepKaTh HENEpeBEIECHHBIX a00peBuatyp,
HEIEPEBEAEHHBIX CJIOB WM IIPOITYCKOB.

« Tepmunonorus. J1omkHO cOOMI0OIaTHCA €IUHCTBO TEPMUHOJIOTUU Ha
OPOTSKEHUM Bcero Tekcra. Hampumep, eciii B Hayane TEKCTa 4acTb
KOpIlyca KaKOro-TO arperata Ha3BaHa «JIHOM», TO B JaJIbHEUIIIEM HEIb3s
Ha3bIBaTh €€ «OCHOBAHUEM), «JIHUIIIEM» U T. II.

« O0s13aTennbHOE COONIOJICHHE SI3BIKOBBIX HOpM. Ilpu mepeBone He
JIOJKHBI JIOMYCKAThCSl TPaMMaTHYECKUE OMIMOKHU, OMUOKH B yIPABJICHUH,
CUHTAKCHUCE WM COrJJaCOBaHMM BpeMeHH. Bce cioBa JTOMKHBI
yHnoTpeOasaThCa B MpaBUIbHOM Topsnke. Henb3st HapyliaTh JeKCUYECKHE
HOPMBI, AOIMyCKaTh opdorpapuyeckue OMOKY U OTICYATKH.

o Crriib. CymecTByromass 0CO0CHHOCTh HAYYHO-TEXHHYECKOIo
nepeBoJa HE JOJKHA HAPYIIATh CTUJIMCTUYECKOE €IMHCTBO U3JI0KEHHOTO.

Ctwib TEMaTUKU JIOJDKEH COOTBETCTBOBATh OOJACTH IPUMEHEHUS
nepeBoaa. He MOKHBI BCTpedaThCsl CIOBa-Mapa3uThl, HEOOOCHOBAHHBIE
MOBTOPBI, & CaM TEKCT JIOJKEH BOCHpPUHUMAThCA Jerko. IIpu mepeBope
JOJDKHA COXPAHSThCA CHHTAKCUYECKAsi CTPYKTypa OpUTHHAIA.

YACTD 2: ®PA3bI J1JISAA ITIEPECKA3A (PE@EPUPOBAHUSA)

TEKCTA
The beginning:
The article / paper / book deals with... — Drta cTaThs /
paboTa / kHUTa
Is concerned with... KacaeTcs /
IS devoted to... MOCBSIIICHA
As the title implies the article describes... — CoritacHo Ha3BaHHIO, B

CTaTbhEC OIINUCHIBACTCA...
The text/article is about ... — Tekct / Ctaths — 0O...

The text/article deals with the problem of (the issue of)... —
Tekct/CTaThs KacaeTcst mpoOJIeMBI. ..

The contents of the article:

According to the article / text... — CornacHo cTaTbe/TeKCTYy. ..

It is specially noted that... — OcobeHHO oTMeUaeTcs. ..

A mention should be made about... — Ynomunaercs. ..

It is spoken in detail about... — [Togpo6HO onmchIBaeTCH. ..

...1s [are noted — Yromunaercs / YoMHUHaIOTCH. . .

One of the main points to be singled out is... — Ogua U3 rIaBHBIX
UJIEH, KOTOPYIO HY’KHO IOAYEPKHYTh, — 3TO. ..

It is reported that... — CooOmaercs. ..

It is shown that... — IToka3ano, uTo...

The text gives a valuable information on... / on the fact that... —
TekcT paeT neHHy nHOOpMaIHIO. ..

Much attention is given to... / to the fact that... — bonbioe BHIMa-
HHC YACIACTCA. ..

It gives a detailed (thorough) analysis of... — B crarbe moapoOHO
aHAJIM3UPYETCH. ..
It draws our attention to.../to the fact that... — Crates npusnekaer

Hame BHUMAaHHUC K ...

The difference between the terms ... and ... should be stressed —
Cretyer mogq4epKHyTh Pa3IMuue MEXIY TEPMUHAMH ... U ...

It should be stressed/emphasized/noted that... — Cnenyer
MOMYEPKHYTH, YTO...

...is/are proposed — Ilpemaraercs / [Ipepiararores. . .

...i1s / are examined — ITpoBepsiercs / Mccnemyrorcs. ..

The conclusion:
From what the author says it becomes clear that... — 13 cioB aBTopa
CTaHOBUTCA SICHO, YTO...

The article is of great help to... — Drta craThs okaxeT OOJBIIYIO
TIOMOIITb. . .
The article is of interest to... — Drta cTaThs mpeACTaBIIeT UHTEPEC

. . .
I think / In my opinion/ | found the article (rather) interesting
(important, useful) as / because... — S cumTaro craThio (JOBOJIBHO)
WHTEPECHOU (BaXKHOMU, MOJIE3HOM), TOTOMY UTO ...

YACTbD 3: TEKCTHBI VIS BHEAYAUTOPHOI'O YTEHUSA

TEXT1 OPERATING SYSTEM

Functions of an Operating System

The operating System’s (OS) function is to manage the main
components of a computer and act as a user interface for the computer’s
hardware. The OS plays an important role for the entire computer system.
The operating system is responsible for performing the following activities,
provides a user interface, performs common hardware functions, manages
system memory, manages processing tasks, provides network capability,
controls access to system resources and manages files.

Types of system interfaces

Providing a system interface, which allows users the ability to access
the computer system, is a principle function of any operating system. There
exist many different types of system interfaces, which include command-
based user interfaces and graphical user interfaces.

Command-based user interface

The first computer system interfaces were command based.
A command-based user interface requires users to memorize commands
and type them in order to run programs and accomplish tasks. Such user

10

interfaces were predominately in personal computers used until
Windows 3.1 became standard issue in 1992.

Graphical user interface

The main difference between the graphical user interface and the
command-based user interface is that the prior uses icons, menus and
button-bars, which are activated by mouse to operate software. In his
writings, Cardinali (1994) explains that graphical user interfaces are linked
to an increase in productivity amongst users. Studies shown that the
graphical user interface significantly reduces the learning curve opposed to
it’s command driven counterpart. Cardinali (1994) attributes the graphical
interface’s preference among users to the elimination of having to
memorize commands. The most commonly used graphical user interface,
today, is Windows by Microsoft.

Common hardware functions

The performance of a computer depends on the Operating system’s
management of hardware, which includes extrapolating data from input
devices or retrieving data from disks, storing the data and displaying the
information via output devices such as a monitor. The OS converts simple
instructions for the tasks above into detailed instructions that the computer
is able to interpret. In addition the OS communicates errors and attention
needs required by input/output devices.

Memory Management and processing tasks

Sobh and Tibrewal (2006) state, «Memory is an important resource
that must be carefully managed». The memory management feature is
responsible for directing user requests for date to the data’s physical
storage location. Other functions of the memory management feature
include space multiplexing and multitasking. Space multiplexing means
that more than one user can be operating the OS at the same time, under
this assumption, the OS schedules every process in such a way that users
get the impression that their processes reside directly on the RAM.
Multitasking allows users to run more than one application simultaneously.
In short the job of the memory manager is to keep track of which parts of
memory are in use and which parts are not in use, to allocate memory to
processes when they need it and de-allocate it when they are done, and to
manage swapping between main memory and disc when main memory is
not big enough to hold all the processes.

Networking capability, system resources, and file management

Some operating systems provide features that allow users to connect
to computer networks and the capability to link users to the Internet (Stair

11

and Reynolds, 2006). The networking capability of the OS makes a user
more vulnerable to security issues. Therefore, the OS is equipped
with protection features such as password protected log-on features,
the recording of user information pertaining to the log-on, and the
reporting of security breaches. Furthermore, users may require that more
than one person have access to the same computer. The OS protects
multiple users on the same computer by keeping track of where each file is
stored and who is authorized to access it.

Market share and trends

» The major operating systems are Windows, Mac OS, UNIX and
Linux.

« Windows decisively dominates the workstation market, with almost
90% of market share. Mac OS has recently increased its share to about
10%.

« Windows XP is still the major workstation operating system, with
65% to Vista’s 24%.

« Windows and UNIX each command about a third of the server
market.

Pros, Cons and Costs

« The major advantages of Windows are availability of business
applications software, support and resources, and very high mainstream
comfort levels.

» The high cost of matching Windows applications on other systems
and the high cost of migration are the greatest barriers to change.

» Despite somewhat higher hardware costs, Mac TCO is lower than
that of Windows.

» Mac OS offers the advantages of less «user friction interface», higher
productivity, lower maintenance and support costs, and better security.

« Windows licensing costs are far higher than the other operating
systems. Mac servers include unlimited licences, and UNIX and Linux are
free.

» Estimates were that there would be 500,000 new pieces of malware
(viruses, trojans etc) for Windows by the end of 2008. Threats to Mac OS,
UNIX and Linux are negligible.

« TCO findings for servers are mixed, with some studies finding
higher TCO for UNIX and Linux, others for Windows — depending on who
commissioned the study.

» Linux and UNIX offer low maintenance requirements, exceptional
stability and very good security.

12

» Mixed networks often make tremendous business sense, as they
allow businesses to match systems to their needs instead of vice versa.
Conclusion
The Operating system is responsible for providing users with an
interface that allow them to communicate directions in order to perform
specified tasks on a computer. The OS facilitates the above process by
managing common hardware functions, where it converts simple directions
into detailed instructions the computer can interpret. Furthermore, the OS
manages memory and processing tasks, which allow users to store, and
request data, to run more than one application at a time and even allow
multiple users access to the same system. Finally, the OS secures the users
files by managing its resource allocation and files, which allow users to
comfortably share their computer and networking capabilities with others.
(5,242 symbols)
http://www.nashnetworks.ca/pros-cons-and-costs-of-operating-systems.htm
https://jennadoucet.wordpress.com/2010/03/14/functions-of-an-
operating-system/

TEXT 2 29 YEARS OF WINDOWS EVOLUTION

Microsoft’s Windows operating system was first introduced in 1985.
Over 29 years later a lot has changed, but what things have stayed the
same? Microsoft Windows has seen nine major versions since its first
release in 1985. Over 29 years later, Windows looks very different but
somehow familiar with elements that have survived the test of time,
increases in computing power and — most recently — a shift from the
keyboard and mouse to the touchscreen.

Here’s a brief look at the history of Windows, from its birth at the
hands of Bill Gates with Windows 1 to the latest arrival under new
Microsoft chief executive Satya Nadella.

Windows 1

This is where it all started for Windows. The original Windows 1 was
released in November 1985 and was Microsoft’s first true attempt at a
graphical user interface in 16-bit.

Development was spearheaded by Microsoft founder Bill Gates and
ran on top of MS-DOS, which relied on command-line input.

It was notable because it relied heavily on use of a mouse. To help
users become familiar with this odd input system, Microsoft included a
game, Reversi that relied on mouse control, not the keyboard, to get people
used to moving the mouse around and clicking onscreen elements.

13

http://www.nashnetworks.ca/pros-cons-and-costs-of-operating-systems.htm
https://jennadoucet.wordpress.com/2010/03/14/functions-of-an-operating-system/
https://jennadoucet.wordpress.com/2010/03/14/functions-of-an-operating-system/
https://www.theguardian.com/technology/microsoft
https://www.theguardian.com/technology/2014/sep/30/microsoft-windows-10-release
https://www.theguardian.com/technology/windows

Windows 2

Two years after the release of Windows 1, Microsoft’s Windows 2
replaced it in December 1987. The big innovation for Windows 2 was that
windows could overlap each other, and it also introduced the ability to
minimise or maximise windows instead of «iconising» or «zooming.

The control panel, where various system settings and configuration
options were collected together in one place, was introduced in Windows 2
and survives to this day.

Microsoft Word and Excel also made their first appearances running
on Windows 2.

Windows 3

The first Windows that required a hard drive launched in 1990.
Windows 3 was the first version to see more widespread success and be
considered a challenger to Apple’s Macintosh and the Commodore Amiga
graphical user interfaces.

Windows 3 introduced the ability to run MS-DOS programmes in
windows, which brought multitasking to legacy programmes. Windows 3
supported 256 colours bringing a more modern, colourful look to the
interface.

Windows 3.1

Windows 3.1 released in 1992 is notable because it introduced
TrueType fonts making Windows a viable publishing platform for the first
time.

Minesweeper also made its first appearance. Windows 3.1 required
IMB of RAM to run and allowed supported MS-DOS programs to be
controlled with a mouse for the first time. Windows 3.1 was also the first
Windows to be distributed on a CD-ROM.

Windows 95

As the name implies, Windows 95 arrived in August 1995 and with it
brought the first ever Start button and Start menu. New windows launched
with a gigantic advertising campaign.

It also introduced the concept of “plug and play” — connect a
peripheral and the operating system finds the appropriate drivers for it and
makes it work. That was the idea; it didn’t always work in practice.

Windows 95 also introduced a 32-bit environment, the task bar and
focused on multitasking. MS-DOS still played an important role for
Windows 95, which required it to run some programmes and elements.
Internet Explorer also made its debut on Windows 95, but was not installed
by default.

14

https://en.wikipedia.org/wiki/Microsoft_Minesweeper

Windows 98

Released in June 1998, Windows 98 built on Windows 95 and brought
with it IE 4, Outlook Express, Windows Address Book, Microsoft Chat
and NetShow Player, which was replaced by Windows Media Player 6.2 in
Windows 98 Second Edition in 1999.

Windows 98 introduced the back and forward navigation buttons and
the address bar in Windows Explorer, among other things. One of the
biggest changes was the introduction of the Windows Driver Model for
computer components and accessories — one driver to support all future
versions of Windows.

USB support was much improved in Windows 98 and led to its
widespread adoption, including USB hubs and USB mice.

Windows ME

Windows ME was the successor to Windows 98 SE and was targeted
specifically at home PC users. It included Internet Explorer 5.5, Windows
Media Player 7, and the new Windows Movie Maker software, which
provided basic video editing and was designed to be easy to use for users.
Microsoft also updated the graphical user interface.

Windows 2000

Windows 2000 was released in February 2000 and was based on
Microsoft’s business-orientated system Windows NT and later became the
basis for Windows XP.

Microsoft’s automatic updating played an important role in Windows
2000 and became the first Windows to support hibernation.

Windows XP

Arguably one of the best Windows versions, Windows XP was
released in October 2001.

It was based on Windows NT like Windows 2000, but brought the
consumer-friendly elements from Windows ME. The Start menu and task
bar got a visual overhaul, bringing the familiar green Start button, blue task
bar and vista wallpaper and other visual effects.

ClearType, which was designed to make text easier to read on LCD
screens, was introduced, as were built-in CD burning, autoplay from CDs
and other media, plus various automated update, that unlike Windows ME
actually worked.

Windows XP was the longest running Microsoft operating system,
seeing three major updates and support up until April 2014 — 13 years from
its original release date. Windows XP was still used on an estimated 430m
PCs when it was discontinued.

15

https://www.theguardian.com/technology/2014/apr/14/windows-xp-support-ends-xpocalypse

Its biggest problem was security: though it had a firewall built in, it
was turned off by default. Windows XP’s huge popularity turned out to be
a boon for hackers and criminals, who exploited its flaws.

Windows Vista

Windows XP to remain competitive for six years before being
replaced by Windows Vista in January 2007. Vista updated the look and
feel of Windows with more focus on security.

It also ran slowly on older computers. PC gamers saw a boost from
Vista’s inclusion of Microsoft’s DirectX 10 technology.

Windows Media Player 11 and IE 7 debuted, along with Windows
Defender an anti-spyware programme. Vista also included speech
recognition, Windows DVD Maker and Photo Gallery. Later a version of
Windows Vista without Windows Media Player was created in response to
anti-trust investigations.

Windows 7

Considered by many as what Windows Vista should have
been, Windows 7 was first released in October 2009. It was intended to fix
all the problems and criticism faced by Vista, with slight tweaks to its
appearance and a concentration on user-friendly features.

It was faster, more stable and easier to use. For this reason, users and
would upgrade to from Windows XP, forgoing Vista entirely.

Windows 7 continued improvements on Windows Aero (the user
interface introduced in Windows Vista) with the addition of a redesigned
taskbar that allows applications to be “pinned” to it, and new window
management features. Other new features were added to the operating
system, including libraries, the new file sharing system HomeGroup, and
support for multitouch input.

In contrast to Windows Vista, Windows 7 was generally praised by
critics, who considered the operating system to be a major improvement
over its predecessor due to its increased performance, its more intuitive
interface.

Windows 8

Released in October 2012, Windows 8 was Microsoft’s most radical
overhaul of the Windows interface, ditching the Start button and Start
menu in favour of a more touch-friendly Start screen.

The new tiled interface replaces the lists of programmes and icons.
A desktop was still included, which resembled Windows 7.

Windows 8 was faster than previous versions of Windows and
included support for the new, much faster USB 3.0 devices. The Windows

16

https://www.theguardian.com/technology/windows-7
https://www.theguardian.com/technology/windows-8

Store, which offers universal Windows apps that run in a full-screen mode
only, was introduced. Programs could still be installed from third-parties
like other iterations of Windows.

The radical overhaul was not welcomed by many. Microsoft attempted
to tread a fine line between touchscreen support and desktop users, but
ultimately desktop users wanting to control Windows with a traditional
mouse and keyboard and not a touchscreen felt Windows 8 was a step
back. Even despite the parallel rise of tablets such as the iPad, and
smartphones, which had begun outselling PCs by the end of 2010.

A free point release to Windows 8 introduced in October 2013,
Windows 8.1 marked a shift towards yearly software updates from
Microsoft.

Windows 10

Announced on 30 September 2014, Windows 10 has only been
released as a test version for keen users to try. The “technical preview” is
very much still a work in progress.

Some interesting features include the ability to switch between a
keyboard and mouse mode and a tablet mode, for those computers like the
Surface Pro 3 with a detachable keyboard.

Windows 10 — despite being the ninth version of Windows — is
designed to unify all Windows platforms across multiple devices, including
Windows Phone and tablets, with universal apps that can be downloaded
from the Windows Store and run on all Windows devices. Windows 10
was also criticized for limiting how users can’t control its operation; in
particular, Windows Update installs all updates automatically, no longer
allows users to selectively install updates, and only the Pro edition of
Windows 10 can delay the automatic installation of new builds of the
platform.

(7,401 symbols)
https://www.theguardian.com/technology/2014/oct/02/from-windows-
1-to-windows-10-29-years-of-windows-evolution

TEXT 3 UNIX

The uniqueness of UNIX

The features that made UNIX a hit from the start are: multitasking
capability, multi-user capability, portability, UNIX programs, library of
application software, security.

1. Multitasking Capability

17

https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution
https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution

Many computers do just one thing at a time, as anyone who uses a PC
or laptop can attest. Try logging onto your company's network while
opening your browser while opening a word processing program. Chances
are the processor will freeze for a few seconds while it sorts out
the multiple instructions. UNIX, on the other hand, lets a computer do
several things at once, such as printing out one file while the user edits
another file. This is a major feature for users, since users don't have to wait
for one application to end before starting another one.

2. Multi-user

The same design that permits multitasking permits multiple users to
use the computer. The computer can take the commands of a number of
users — determined by the design of the computer — to run programs, access
files, and print documents at the same time.

The computer can't tell the printer to print all the requests at once, but
it does prioritize the requests to keep everything orderly. It also lets several
users access the same document by compartmentalizing the document so
that the changes of one user don't override the changes of another user.

3. System portability

A major contribution of the UNIX system was its portability,
permitting it to move from one brand of computer to another with a
minimum of code changes. At a time when different computer lines of the
same vendor didn't talk to each other — yet alone machines of multiple
vendors — that meant a great savings in both hardware and software
upgrades. It also meant that the operating system could be upgraded
without having all the customer's data inputted again. And new versions of
UNIX were backward compatible with older versions, making it easier for
companies to upgrade in an orderly manner.

4. UNIX Programs

UNIX comes with hundreds of programs that can divide into two
classes; Integral utilities These are absolutely necessary for the operation
of the computer, such as the command interpreter, and Tools that aren't
necessary for the operation of UNIX but provide the user with additional
capabilities, such as typesetting capabilities and e-mail.

UNIX Communications

E-mail 1s commonplace today, but it has only come into its own in
the business community within the last 10 years. Not so with UNIX users,
who have been enjoying e-mail for several decades. UNIX e-mail at first
permitted users on the same computer to communicate with each other via
their terminals. Then users on different machines, even made by different

18

http://www.123helpme.com/search.asp?text=multiple
http://www.123helpme.com/search.asp?text=unix
http://www.123helpme.com/search.asp?text=operating+system

vendors, were connected to support e-mail. And finally, UNIX systems
around the world were linked into a world wide web decades before
the development of today's World Wide Web.

5. Applications libraries

UNIX as it i1s known today didn't just develop overnight. Nor were
just a few people responsible for it's growth. As soon as it moved from Bell
Labs into the universities, every computer programmer worth his or her
own salt started developing programs for UNIX. Today there are hundreds
of UNIX applications that can be purchased from third-party vendors,
in addition to the applications that come with UNIX.

6. Security.

It 1s safe, preventing one program from accessing memory or storage
space allocated to another, and enables protection, requiring users to have
permission to perform certain functions, i.e. accessing a directory, file, or
disk drive.

UNIX at HOME

A few of the many advantages of using Unix at home are: Unix runs
on older, less powerful machines. If your machine does not have enough
CPU speed and memory for Windows, it can still run Unix.

Several Unix flavors such as FreeBSD are free. Additionally high
quality, free applications like the emacs text editor, Apache web server and
GIMP image editor are available for Unix platforms. Equivalent Windows
software costs hundreds of dollars

Unix provides a flexible multi-user environment. Each member
of the family can have their own account with personal settings and secure
files. You can keep the kids from reading your work, financial or personal
files, while allowing your spouse to access financial files but not work
or personal files.

Unix provides the ultimate in computer programming environments.
Powerful C, C++, Fortran and Java compilers along with development
tools are available for free. Furthermore, the Internet is littered with
libraries of free code for these compilers. It would cost over $1,000 to
create a comparable programming environment for a machine running
Windows.

On the downside

You should only consider Unix if you are willing to spend a lot of time
working on your operating system. Unix is harder to install, maintain and
upgrade than Windows or the MacOS. More home oriented applications
run under Windows than Unix. If you need educational software for
the kids or love computer games, Windows is a better choice than Unix.

19

Dual booting (running Windows and Unix on the same machine)
overcomes this disadvantage.

UNIX Evaluation

In making a decision on which OS is better, we must finally evaluate
the abundant advantages of UNIX over the disadvantages. As programs
continue to become larger and more complex, and as computers become
faster and increase in complexity, operating systems must become more
and more stable. In comparison with Windows NT, UNIX maintains this
stability very well.

NASA, who relies very heavily on their equipment, prefers UNIX
because if its stability in complex, mission-critical tasks as UNIX very
rarely crashes (see graph below). When UNIX does actually crash, only
parts of it crash so the system is often easily recoverable without rebooting
(UNIX-Based 37). In addition, UNIX tends to beat Windows NT in
performance tests. Companies and organizations often create performance
tests where an operating system is put under an intense load to see how it
performs against other operating systems under the same work load.
A newly released study shows that Windows NT finished last in
comparison with five UNIX versions (See Outside Source: UNIX Trounces
Windows NT in Tests). The tests measured reliability, ease of management,
stability, and performance among other things (UNIX Trounces).

Finally, but still very important, although UNIX can be more
expensive than Windows NT initially, it can actually cost less in the long
run. The «base» software in UNIX generally costs more than Windows NT,
but client-access licenses and add-on packages often do not. What is a
client-access license? Like most published information, programs are
restricted by copyright laws. One cannot just legally copy a program from
one computer to another without paying for another copy of that software.
In the networked environment, servers are licensed in a different way. They
are licensed according to how many other computers are trying to use its
data at the same time. For example, in a network of seven computers
connected together, one being the server, if all six computers were logged
in (using the server's data) at the same time, then the server would need six
of what are called client-access licenses. Windows NT continually charges
more and more for each client-access license added, while you can usually
get an unlimited client-access license for UNIX for about $1200.
One could spend thousands more in Windows NT client-access licenses.
(Microsoft). As well, add-on software packages (such as those that manage
e-mail for many users) for UNIX often cost less (and are often already
included with UNIX) than those for Windows NT.

20

Disadvantages of UNIX

In continuing the evaluation of Windows NT and UNIX, I will show
you the disadvantages and advantages of UNIX. UNIX generally holds its
disadvantages in its interaction with users. As hinted to before, UNIX is
not very user-friendly to beginners. Many people, including UNIX gurus
(people who know about and often like UNIX), agree that UNIX is not as
user-friendly. Using UNIX can often require the knowledge of basic
commands as opposed to just using the mouse. X Windows, a system
similar to Microsoft Windows that runs on UNIX, is also not as easy and
attractive to use as Windows (Showdown). However, this is changing
rapidly. An organization that produces free software, known as the KDE
Free Qt Foundation, has, in fact, developed a windowing system called
the K Desktop Environment that many people consider to be far superior to
the Windows NT interface in usability, customizability, and stability
(Systems 34).

Finally, users do not have as large of a choice for programs under
UNIX as they do under Windows. A program developed for the Microsoft
Windows environment cannot automatically be run on UNIX. Some
modifications need to be made to a program before it can be run on a
different operating system other than for which it was intended to.
Companies that develop software have been reluctant to develop programs
for UNIX because not as many people use the operating system. However,
as Linux, a free operating system that greatly resembles and is almost
comparable to UNIX (Reborn), is increasing in popularity, companies are
continually providing more and more programs for UNIX (Showdown).

Different Unix systems

They are many different versions of Unix, as well as some Unix
'lookalikes'. The most widely used are: « System V (distributed by the
original developers, AT&T) ¢ AIX (IBM) e« Berkeley BSD (from
the University of California, Berkeley) ¢ SunOS, now known as Solaris
(from the makers of Sun workstations) ¢ Xenix (a PC version of Unix).

(7,802 symbols)
http://www.123helpme.com/unix-operating-system-view.asp?1d=159727

TEXT4 LINUX

The term “Linux” is used to describe Open Source software,
consisting of an operating system kernel, a graphical user environment,
software configuration, utilities and applications that make a computer

21

http://www.123helpme.com/unix-operating-system-view.asp?id=159727

usable. There are many different versions of Linux available. These
versions are referred to as “distributions”.

What Linux distributions, desktop environments and most Linux
applications all have in common is: They are Open Source. The Linux
community is a type of Open Source community focused on the Linux
operating system and its applications, and using, improving and supporting
them.

Open Source Community

Using open source software like Linux, and Linux applications
provides you with the freedom to run a complete, full-featured operating
system, pre-configured with most, if not all, of the applications you will
need for your daily computing — or to change anything about the way it
looks, the way it works, or the applications it runs to suit your taste.
Although you will find some distributions of Linux for purchase, the vast
majority are provided free of charge. Open Source software is licensed in a
way that allows anyone to give it away for free, no strings attached.

For example, the licence gives any member of the user community the
freedom to use Linux for any purpose, to distribute, modify, redistribute, or
even sell the operating system. If you do modify and then redistribute
Linux with your modifications, you are required by the licence to submit
your modifications for possible inclusion into future versions. There is no
guarantee that this will ever happen, but if you have made it better, then
your changes just might be included in the next release of your distribution
of Linux.

Developer Community

Many users of Linux are corporations that use the operating system to
run their businesses, or include it within their products. Google’s
ChromeOS and Android have roots in Linux. Many of the corporations that
make use of Linux provide fixes and new features for Linux as they use the
software for their businesses. These improvements are given back to the
Linux community and Linux improves as a result. These efforts
on the part of the developer community is how we can continually improve
and grow without having to charge our users money.

Linux Advantage: Community

Whether you are a home user of Linux, a Linux software or
application developer, or an employee of an organization that uses the
operating system, you are a member of the Linux and Open Source
communities and you benefit from the efforts of the developers who
contribute to Linux. Members of the Linux community can — and do — run

22

Linux on almost any hardware, from the prettiest Macbook to the cheapest
netbook, from the newest Chromebook to some very old machines
designed for Windows, and from the most powerful Internet servers
to the smallest smart thermostat.

Having “an inspiring, engaging, and enjoyable community” (Preface:
The Art of Community, 2nd Edition) is the lifeblood of any open source
software project. The community provides product and feature ideas, user
support, developer talent, documentation, financial support, visionary
direction, and cultural norms — for the benefit of anyone who uses,
contributes to, or otherwise supports the project. Although many projects,
applications and even companies have their own communities,
the inspirational engagement of the Linux community is one of the key
things that makes Linux one of the top 3 operating systems in the world.

Linux Security

The Linux operating system is more secure, and better supported than
the operating systems preinstalled on most home computer hardware today.
Linux 1s backed by many large corporations, as well as independent
developers and users, many of whom are focused on ensuring and
improving the security that is built into the operating system. The built-in
updater provided with your Linux distribution provides security updates
for both its software applications and the operating system. Vulnerabilities
are patched more quickly, and are delivered automatically and more
frequently than the two most popular operating systems.

Combination lock

Four Reasons Why Linux Is More Secure

When you use a distribution of Linux, security updates, driver
updates, application updates, software upgrades and operating system
upgrades are all provided, all free of charge. And they are all available
from trusted sources. So you have no more need to search the Internet for
software. No more risking malware or junkware infections as a result from
downloading from the wrong site. There are thousands of software titles in
hundreds of categories available in your Linux distribution’s repositories —
the ultimate in a trusted source!

Linux is designed with security in mind. Unlike operating systems that
update only once a month, Linux distributions receive updates
continuously. The updates include security patches for the operating
system and all of its components. Security updates for all of its installed
applications are also provided on the same schedule. This ensures that you

23

have the latest protection for all of your computer's software — as soon as
it's available!

Linux can get viruses and other infections... but, as a rule, it doesn't.
Rapid and timely updates ensure that there are very few, if any threats to
Linux systems that persist in the wild. In reality, there have been very few
«publicy infections in the last 10 years that can affect even Linux.
And because of security updates to Linux, those few old attacks are no
longer a threat to anyone installing or using a modern Linux distribution
today. Linux is designed to make it difficult for viruses, rootkits and other
malware to be installed and run without conscious intervention by you,
the user. Even if you do accidentally invite in an infection, chances are it's
designed to attack Windows and can do no damage to your Linux system.

Another significant security feature of Linux is that its users are not
administrators by default. Administrators («root» users) on any computer
system have permission to do anything they want, including do damage to
the system. For example, other operating systems look at the name of a file
to determine which program should open it, then immediately attempt to
open it. That design makes it easy for an intruder to attack a computer.
Linux opens a file based on what the file is, not based on its name. So even
if a malicious program disguises its identity by using a name like
«Business Proposal.docx» Linux will recognize the file as a program.
The system provides a warning that the file is not a text document, but that
it is really a program that will be run if you give it permission to continue.
To be extra secure, Linux requires you to provide your administrator
password to grant that permission. Every single time.

Conclusion

Unlike Windows, and OSX, Linux is not created and supported by just
one company. Over 4,000 individual developers contributed to Linux over
the last 15 years. Linux is supported by individuals, the Linux and Open
Source communities, as well as many organizations. These organizations
include Intel, Redhat, Linaro, Samsung, IBM, SUSE, Texas Instruments,
Google, Canonical, Oracle, AMD, and Microsoft. These corporations, and
others, use the Linux operating system to run their businesses, or include it
within their products. (Google Android phones and Chromebooks,
Samsung televisions, etc.) They want to ensure that Linux is provided with
the best protection from security vulnerabilities. Many of these
corporations provide security fixes and new security measures for Linux as
they use it in their businesses. These improvements are given back to the
Linux distribution and the software improves. Whether you are a home

24

user of Linux, a Linux software or application developer, or an employee
of a company that uses Linux, the scrutiny and ongoing security
improvements provided for Linux are benefiting you.
(6,483 symbols)
http://goinglinux.com/articles/CommunityTheLinuxAdvantage en.htm
http://goinglinux.com/articles/Security-TheL inuxAdvantage_en.htm

TEXTS5 COMPUTERS: HISTORY AND DEVELOPMENT

Nothing epitomizes modern life better than the computer. For better or
worse, computers have infiltrated every aspect of our society. Today
computers do much more than simply compute: supermarket
scanners calculate our grocery bill while keeping store inventory;
computerized telephone switching centers play traffic cop to millions of
calls and keep lines of communication untangled; and automatic teller
machines let us conduct banking transactions from virtually anywhere in
the world. But where did all this technology come from and where is it
heading? To fully understand and appreciate the impact computers have on
our lives and promises they hold for the future, it is important to
understand their evolution.

Early Computing Machines and Inventors

The abacus, which emerged about 5,000 years ago in Asia Minor and
1s still in use today, may be considered the first computer. This device
allows users to make computations using a system of sliding beads
arranged on a rack. Early merchants used the abacus to keep trading
transactions. But as the use of paper and pencil spread, particularly in
Europe, the abacus lost its importance. It took nearly 12 centuries,
however, for the next significant advance in computing devices to emerge.
In 1642, Blaise Pascal (1623—-1662), the 18-year-old son of a French tax
collector, invented what he called a numerical wheel calculator to help his
father with his duties. This brass rectangular box, also called a Pascaline,
used eight movable dials to add sums up to eight figures long. Pascal's
device used a base of ten to accomplish this. For example, as one dial
moved ten notches, or one complete revolution, it moved the next dial —
which represented the ten's column — one place. When the ten's dial moved
one revolution, the dial representing the hundred's place moved one notch
and so on. The drawback to the Pascaline, of course, was its limitation to
addition.

25

http://goinglinux.com/articles/CommunityTheLinuxAdvantage_en.htm
http://goinglinux.com/articles/Security-TheLinuxAdvantage_en.htm

In 1694, a German mathematician and philosopher, Gottfried Wilhem
von Leibniz (1646—-1716), improved the Pascaline by creating a machine
that could also multiply. Like its predecessor, Leibniz's mechanical
multiplier worked by a system of gears and dials. Partly by studying
Pascal's original notes and drawings, Leibniz was able to refine his
machine. The centerpiece of the machine was its stepped-drum gear
design, which offered an elongated version of the simple flat gear. It wasn't
until 1820, however, that mechanical calculators gained widespread use.
Charles Xavier Thomas de Colmar, a Frenchman, invented a machine that
could perform the four basic arithmetic functions. Colmar's mechanical
calculator, the arithometer, presented a more practical approach to
computing because it could add, subtract, multiply and divide. With its
enhanced versatility, the arithometer was widely used up until the First
World War. Although later inventors refined Colmar's calculator, together
with fellow inventors Pascal and Leibniz, he helped define the age of
mechanical computation.

The real beginnings of computers as we know them today, however,
lay with an English mathematics professor, Charles Babbage (1791-1871).
Frustrated at the many errors he found while examining calculations for the
Royal Astronomical Society, Babbage declared, “I wish to God these
calculations had been performed by steam!” With those words,
the automation of computers had begun. By 1812, Babbage noticed a
natural harmony between machines and mathematics: machines were best
at performing tasks repeatedly without mistake; while mathematics,
particularly the production of mathematic tables, often required the simple
repetition of steps. The problem centered on applying the ability of
machines to the needs of mathematics. Babbage's first attempt at solving
this problem was in 1822 when he proposed a machine to perform
differential equations, called a Difference Engine. Powered by steam and
large as a locomotive, the machine would have a stored program and could
perform calculations and print the results automatically. After working on
the Difference Engine for 10 years, Babbage was suddenly inspired to
begin work on the first general-purpose computer, which he called the
Analytical Engine. Babbage's assistant, Augusta Ada King, Countess of
Lovelace (1815-1842) and daughter of English poet Lord Byron, was
instrumental in the machine's design. One of the few people who
understood the Engine's design as well as Babbage, she helped revise
plans, secure funding from the British government, and communicate the
specifics of the Analytical Engine to the public. Also, Lady Lovelace's fine

26

understanding of the machine allowed her to create the instruction routines
to be fed into the computer, making her the first female computer
programmer. In the 1980's, the U.S. Defense Department named a
programming language ADA in her honor.

Babbage's steam-powered Engine, although ultimately never
constructed, may seem primitive by today's standards. However, it outlined
the basic elements of a modern general purpose computer and was a
breakthrough concept. Consisting of over 50,000 components, the basic
design of the Analytical Engine included input devices in the form of
perforated cards containing operating instructions and a “store” for
memory of 1,000 numbers of up to 50 decimal digits long. It also
contained a “mill” with a control unit that allowed processing instructions
in any sequence, and output devices to produce printed results. Babbage
borrowed the idea of punch cards to encode the machine's instructions
from the Jacquard loom. The loom, produced in 1820 and named after its
inventor, Joseph-Marie Jacquard, used punched boards that controlled
the patterns to be woven.

In 1889, an American inventor, Herman Hollerith (1860—1929), also
applied the Jacquard loom concept to computing. His first task was to find
a faster way to compute the U.S. census. The previous census in 1880 had
taken nearly seven years to count and with an expanding population, the
bureau feared it would take 10 years to count the latest census. Unlike
Babbage's idea of using perforated cards to instruct the machine,
Hollerith's method used cards to store data information which he fed into a
machine that compiled the results mechanically. Each punch on a card
represented one number, and combinations of two punches represented one
letter. As many as 80 variables could be stored on a single card. Instead of
ten years, census takers compiled their results in just six weeks with
Hollerith's machine. In addition to their speed, the punch cards served as a
storage method for data and they helped reduce computational errors.
Hollerith brought his punch card reader into the business world, founding
Tabulating Machine Company in 1896, later to become International
Business Machines (IBM)in 1924 after a series of mergers. Other
companies such as Remington Rand and Burroughs also manufactured
punch readers for business use. Both business and government used punch
cards for data processing until the 1960's.

In the ensuing years, several engineers made other significant
advances. Vannevar Bush (1890-1974) developed a calculator for solving
differential equations in 1931. The machine could solve complex

27

differential equations that had long left scientists and mathematicians
baffled. The machine was cumbersome because hundreds of gears and
shafts were required to represent numbers and their various relationships to
each other. To eliminate this bulkiness, John V. Atanasoff (b. 1903), a
professor at lowa State College (now called lowa State University) and his
graduate student, Clifford Berry, envisioned an all-electronic computer that
applied Boolean algebra to computer circuitry. This approach was based on
the mid-19th century work of George Boole (1815-1864) who clarified the
binary system of algebra, which stated that any mathematical equations
could be stated simply as either true or false. By extending this concept to
electronic circuits in the form of on or off, Atanasoff and Berry had
developed the first all-electronic computer by 1940. Their project,
however, lost its funding and their work was overshadowed by similar
developments by other scientists.
(6,591 symbols)
http://www.dia.eui.upm.es/asignatu/sis_opl/comp_hd/comp_hd.htm

TEXT 5.1 FIVE GENERATIONS OF MODERN COMPUTERS

First Generation (1945-1956)

With the onset of the Second World War, governments sought to
develop computers to exploit their potential strategic importance. This
increased funding for computer development projects hastened technical
progress. By 1941 German engineer Konrad Zuse had developed a
computer, the Z3, to design airplanes and missiles. The Allied forces,
however, made greater strides in developing powerful computers. In 1943,
the British completed a secret code-breaking computer called Colossus to
decode German messages. The Colossus's impact on the development of
the computer industry was rather limited for two important reasons. First,
Colossus was not a general-purpose computer; it was only designed to
decode secret messages. Second, the existence of the machine was kept
secret until decades after the war.

American efforts produced a broader achievement. Howard H. Aiken
(1900-1973), a Harvard engineer working with IBM, succeeded
in producing an all-electronic calculator by 1944. The purpose of
the computer was to create ballistic charts for the U.S. Navy. It was about
half as long as a football field and contained about 500 miles of wiring.
The Harvard-IBM Automatic Sequence Controlled Calculator, or Mark 1
for short, was a electronic relay computer. It used electromagnetic signals

28

http://www.dia.eui.upm.es/asignatu/sis_op1/comp_hd/comp_hd.htm

to move mechanical parts. The machine was slow (taking 3—5 seconds per
calculation) and inflexible (in that sequences of calculations could not
change); but it could perform basic arithmetic as well as more complex
equations.

Another computer development spurred by the war was the Electronic
Numerical Integrator and Computer (ENIAC), produced by a partnership
between the U.S. government and the University of Pennsylvania.
Consisting of 18,000 vacuum tubes, 70,000 resistors and 5 million soldered
joints, the computer was such a massive piece of machinery that it
consumed 160 kilowatts of electrical power, enough energy to dim the
lights in an entire section of Philadelphia. Developed by John Presper
Eckert (1919-1995) and John W. Mauchly (1907-1980), ENIAC, unlike
the Colossus and Mark I, was a general-purpose computer that computed at
speeds 1,000 times faster than Mark 1.

In the mid-1940'sJohn von Neumann (1903—-1957) joined
the University of Pennsylvania team, initiating concepts in computer
design that remained central to computer engineering for the next 40 years.
Von Neumann designed the Electronic Discrete Variable Automatic
Computer (EDVAC) in 1945 with a memory to hold both a stored program
as well as data. This «stored memory» technique as well as the
«conditional control transfer», that allowed the computer to be stopped at
any point and then resumed, allowed for greater versatility in computer
programming. The key element to the von Neumann architecture was the
central processing unit, which allowed all computer functions to be
coordinated through a single source. In 1951, the UNIVAC I (Universal
Automatic Computer), built by Remington Rand, became one of the first
commercially available computers to take advantage of these advances.
Both the U.S. Census Bureau and General Electric owned UNIVACs.
One of UNIVAC's impressive early achievements was predicting the
winner of the 1952 presidential election, Dwight D. Eisenhower.

First generation computers were characterized by the fact that
operating instructions were made-to-order for the specific task for which
the computer was to be used. Each computer had a different binary-coded
program called a machine language that told it how to operate. This made
the computer difficult to program and limited its versatility and speed.
Other distinctive features of first generation computers were the use
of vacuum tubes (responsible for their breathtaking size) and magnetic
drums for data storage.

29

Second Generation Computers (1956-1963)

By 1948, the invention of the transistor greatly changedthe computer's
development. The transistor replaced the large, cumbersome vacuum tube
in televisions, radios and computers. As a result, the size of electronic
machinery has been shrinking ever since. The transistor was at work
in the computer by 1956. Coupled with early advances in magnetic-core
memory, transistors led to second generation computers that were smaller,
faster, more reliable and more energy-efficient than their predecessors.
The first large-scale machines to take advantage of this transistor
technology were early supercomputers, Stretch by IBM and LARC by
Sperry-Rand. These computers, both developed for atomic energy
laboratories, could handle an enormous amount of data, a capability much
in demand by atomic scientists. The machines were costly, however, and
tended to be too powerful for the business sector's computing needs,
thereby limiting their attractiveness. Only two LARCs were ever installed:
one in the Lawrence Radiation Labs in Livermore, California, for which
the computer was named (Livermore Atomic Research Computer) and the
other at the U.S. Navy Research and Development Center in Washington,
D.C. Second generation computers replaced machine language with
assembly language, allowing abbreviated programming codes to replace
long, difficult binary codes.

Throughout the early 1960's, there were a number of commercially
successful second generation computers used in business, universities, and
government from companies such as Burroughs,Control Data, Honeywell,
IBM, Sperry-Rand, and others. These second generation computers were
also of solid state design, and contained transistors in place of vacuum
tubes. They also contained all the components we associate with the
modern day computer: printers, tape storage, disk storage, memory,
operating systems, and stored programs. One important example was
the IBM 1401, which was universally accepted throughout industry, and is
considered by many to be the Model T of the computer industry. By 1965,
most large business routinely processed financial information using second
generation computers.

It was the stored program and programming language that gave
computers the flexibility to finally be cost effective and productive for
business use. The stored program concept meant that instructions to run a
computer for a specific function (known as a program) were held inside the
computer's memory, and could quickly be replaced by a different set of
instructions for a different function. A computer could print customer

30

invoices and minutes later design products or calculate paychecks. More
sophisticated high-level languages such as COBOL (Common Business-
Oriented Language) and FORTRAN (Formula Translator) came into
common use during this time, and have expanded to the current day. These
languages replaced cryptic binary machine code with words, sentences,
and mathematical formulas, making it much easier to program a computer.
New types of careers (programmer, analyst, and computer systems expert)
and the entire software industry began with second generation computers.

Third Generation Computers (1964-1971)

Though transistors were clearly an improvement over the vacuum
tube, they still generated a great deal of heat, which damaged
the computer's sensitive internal parts. The quartz rock eliminated this
problem. Jack Kilby, an engineer with Texas Instruments, developed the
integrated circuit (IC) in 1958. The IC combined three electronic
components onto a small silicon disc, which was made from quartz.
Scientists later managed to fit even more components on a single chip,
called a semiconductor. As a result, computers became ever smaller as
more components were squeezed onto the chip. Another third-generation
development included the use of an operating system that allowed
machines to run many different programs at once with a central program
that monitored and coordinated the computer's memory.

Fourth Generation (1971-Present)

After the integrated circuits, the only place to go was down — in size,
that is. Large scale integration (LSI) could fit hundreds of components onto
one chip. By the 1980's, very large scale integration (VLSI) squeezed
hundreds of thousands of components onto a chip. Ultra-large scale
integration (ULSI) increased that number into the millions. The ability to
fit so much onto an area about half the size of a U.S. dime helped diminish
the size and price of computers. It also increased their power, efficiency
and reliability. The Intel 4004 chip, developed in 1971, took the integrated
circuit one step further by locating all the components of a computer
(central processing unit, memory, and input and output controls) on a
minuscule chip. Whereas previously the integrated circuit had had to be
manufactured to fit a special purpose, now one microprocessor could be
manufactured and then programmed to meet any number of demands. Soon
everyday household items such as microwave ovens, television sets and
automobiles with electronic fuel injection incorporated microprocessors.

Such condensed power allowed everyday people to harness a
computer's power. They were no longer developed exclusively for large

31

business or government contracts. By the mid-1970's, computer
manufacturers sought to bring computers to general consumers. These
minicomputers came complete with user-friendly software packages that
offered even non-technical users an array of applications, most popularly
word processing and spreadsheet programs. Pioneers in this field
were Commodore, Radio Shack and Apple Computers. In the early
1980's, arcade video games such as Pac Man and home video game
systems such as the Atari 2600 ignited consumer interest for more
sophisticated, programmable home computers.

In 1981, IBM introduced its personal computer (PC) for use in the
home, office and schools. The 1980's saw an expansion in computer use in
all three arenas as clones of the IBM PC made the personal computer even
more affordable. The number of personal computers in use more than
doubled from 2 million in 1981 to 5.5 million in 1982. Ten years later,
65 million PCs were being used. Computers continued their trend toward a
smaller size, working their way down from desktop to laptop computers
(which could fit inside a briefcase) to palmtop (able to fit inside a breast
pocket). In direct competition with IBM's PC was Apple's Macintosh line,
introduced in 1984. Notable for its user-friendly design, the Macintosh
offered an operating system that allowed users to move screen icons
instead of typing instructions. Users controlled the screen cursor using a
mouse, a device that mimicked the movement of one's hand on
the computer screen.

As computers became more widespread in the workplace, new ways
to harness their potential developed. As smaller computers became more
powerful, they could be linked together, or networked, to share memory
space, software, information and communicate with each other.
As opposed to a mainframe computer, which was one powerful computer
that shared time with many terminals for many applications, networked
computers allowed individual computers to form electronic co-ops. Using
either direct wiring, called a Local Area Network (LAN), or telephone
lines, these networks could reach enormous proportions. A global web of
computer circuitry, the Internet, for example, links computers worldwide
into a single network of information. During the 1992 U.S. presidential
election, vice-presidential candidate Al Gore promised to make the
development of this so-called “information superhighway” an
administrative priority. Though the possibilities envisioned by Gore and
others for such a large network are often years (if not decades) away from
realization, the most popular use today for computer networks such as the

32

Internet is electronic mail, or E-mail, which allows users to type in a
computer address and send messages through networked terminals across
the office or across the world.

Fifth Generation (Present and Beyond)

Defining the fifth generation of computers is somewhat difficult
because the field is in its infancy. The most famous example of a fifth
generation computer is the fictional HAL9000 from Arthur C. Clarke's
novel, 2001: A Space Odyssey. HAL performed all of the functions
currently envisioned for real-life fifth generation computers. With artificial
intelligence, HAL could reason well enough to hold conversations with its
human operators, use visual input, and learn from its own experiences.
(Unfortunately, HAL was a little too human and had a psychotic
breakdown, commandeering a spaceship and killing most humans
on board).

Though the wayward HAL9000 may be far from the reach of real-life
computer designers, many of its functions are not. Using recent
engineering advances, computers may be able to accept spoken word
instructions and imitate human reasoning. The ability to translate a foreign
language 1s also a major goal of fifth generation computers. This feat
seemed a simple objective at first, but appeared much more difficult when
programmers realized that human understanding relies as much on context
and meaning as it does on the simple translation of words.

Many advances in the science of computer design and technology are
coming together to enable the creation of fifth-generation computers.
Two such engineering advances are parallel processing, which replaces
von Neumann's single central processing unit design with a system
harnessing the power of many CPUs to work as one. Another advance
is superconductor technology, which allows the flow of electricity with
little or no resistance, greatly improving the speed of information flow.
Computers today have some attributes of fifth generation computers.
For example, expert systems assist doctors in making diagnoses by
applying the problem-solving steps a doctor might use in assessing a
patient's needs. It will take several more years of development before
expert systems are in widespread use.

(11,237 symbols)
http://www.dia.eui.upm.es/asignatu/sis_opl/comp_hd/comp_hd.htm

33

http://www.dia.eui.upm.es/asignatu/sis_op1/comp_hd/comp_hd.htm

TEXT 6 HOW COMPUTER MOUSE WAS INVENTED

The trackball, a related pointing device, was invented in 1941
by Ralph Benjamin as part of a World War II-era fire-control radar plotting
system called Comprehensive Display System (CDS). Benjamin was then
working for the British Royal Navy Scientific Service. Benjamin's project
used analog computers to calculate the future position of target aircraft
based on several initial input points provided by a user with a joystick.
Benjamin felt that a more elegant input device was needed and invented
what they called a “roller ball” for this purpose.

The device was patented in 1947, but only a prototype using a metal
ball rolling on two rubber-coated wheels was ever built, and the device was
kept as a military secret.

Another early trackball was built by British electrical engineer
Kenyon Taylor in collaboration with Tom Cranston and Fred Longstaff.
Taylor was part of the original Ferranti Canada, working on the Royal
Canadian Navy's DATAR (Digital Automated Tracking and Resolving)
system in 1952.

DATAR was similar in concept to Benjamin's display. The trackball
used four disks to pick up motion, two each for the X and Y directions.
Several rollers provided mechanical support. When the ball was rolled,
the pickup discs spun and contacts on their outer rim made periodic contact
with wires, producing pulses of output with each movement of the ball.
By counting the pulses, the physical movement of the ball could be
determined. A digital computer calculated the tracks, and sent the resulting
data to other ships in a task force using pulse-code modulation radio
signals. This trackball used a standard Canadian five-pin bowling ball.
It was not patented, as it was a secret military project as well.

On 2 October 1968, a mouse device named Rollkugel (German for
“rolling ball”’) was released that had been developed and published by the
German company Telefunken. As the name suggests and unlike Engelbart's
mouse, the Telefunken model already had a ball. It was based on an earlier
trackball-like device (also named Rollkugel) that was embedded into radar
flight control desks. This had been developed around 1965 by a team led
by Rainer Mallebrein at Telefunken Konstanz for the German
Bundesanstalt fur Flugsicherung as part of their TR 86 process computer
system with its SIG 100-86 vector graphics terminal.

When the development for the Telefunken main frame
TR 440 (de) began in 1965, Mallebrein and his team came up with the idea
of «reversing» the existing Rollkugel into a moveable mouse-like device,

34

https://en.wikipedia.org/wiki/Trackball
https://en.wikipedia.org/wiki/Ralph_Benjamin
https://en.wikipedia.org/wiki/World_War_II
https://en.wikipedia.org/wiki/Fire-control_system
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Comprehensive_Display_System
https://en.wikipedia.org/wiki/Royal_Navy
https://en.wikipedia.org/wiki/Analog_computer
https://en.wikipedia.org/wiki/Joystick
https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Kenyon_Taylor
https://en.wikipedia.org/wiki/Ferranti_Canada
https://en.wikipedia.org/wiki/Royal_Canadian_Navy
https://en.wikipedia.org/wiki/Royal_Canadian_Navy
https://en.wikipedia.org/wiki/DATAR
https://en.wikipedia.org/wiki/Computer#Vacuum_tubes_and_digital_electronic_circuits
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://en.wikipedia.org/wiki/Five-pin_bowling
https://en.wikipedia.org/wiki/Telefunken
https://en.wikipedia.org/wiki/Rollkugel_(trackball_device)
https://de.wikipedia.org/wiki/TR_440

so that customers did not have to be bothered with mounting holes for the
earlier trackball device. Together with light pens and trackballs, it was
offered as optional input device for their system since 1968. Some
samples, installed at the Leibniz-Rechenzentrum in Munich in 1972, are
still well preserved. Telefunken considered the invention too small to apply
for a patent on their device.

A few months after Telefunken started to sell the Rollkugel, Engelbart
released his demo on 9 December 1968. Independently, Douglas Engelbart
at the Stanford Research Institute (now SRI International) invented his first
mouse prototype in the 1960s with the assistance of his lead engineer Bill
English. They christened the device the mouse as early models had a cord
attached to the rear part of the device looking like a tail and generally
resembling the common mouse. Engelbart never received any royalties for
it, as his employer SRI held the patent, which ran out before it became
widely used in personal computers. The invention of the mouse was just a
small part of Engelbart's much larger project, aimed at augmenting human
intellect via the Augmentation Research Center.

Several other experimental pointing-devices developed for Engelbart's
oN-Line System (NLS) exploited different body movements — for example,
head-mounted devices attached to the chin or nose— but ultimately
the mouse won out because of its speed and convenience. The first mouse,
a bulky device used two potentiometers perpendicular to each other and
connected to wheels: the rotation of each wheel translated into motion
along one axis. At the time of the «Mother of All Demos», Englebart's
group had been using their second generation, 3-button mouse for about
a year.

The Xerox Alto was one of the first computers designed for individual
use in 1973, and is regarded as the grandfather of computers that utilize the
mouse. Inspired by PARC's Alto, the Lilith, a computer which had been
developed by a team around Niklaus Wirth at ETH Ziirich between
1978 and 1980, provided a mouse as well. The third marketed version of
an integrated mouse shipped as a part of a computer and intended for
personal computer navigation came with the Xerox 8010 Star Information
System in 1981.

By 1982 the Xerox 8010 was probably the best-known computer with
a mouse, and the forthcoming Apple Lisa was rumored to use one, but the
peripheral remained obscure; Jack Hawley of The Mouse House reported
that one buyer for a large organization believed at first that his company
sold lab mice. Hawley, who manufactured mice for Xerox, stated that

35

https://en.wikipedia.org/wiki/Leibniz-Rechenzentrum
https://en.wikipedia.org/wiki/The_Mother_of_All_Demos
https://en.wikipedia.org/wiki/Douglas_Engelbart
https://en.wikipedia.org/wiki/SRI_International
https://en.wikipedia.org/wiki/Bill_English_(computer_engineer)
https://en.wikipedia.org/wiki/Bill_English_(computer_engineer)
https://en.wikipedia.org/wiki/Mouse
https://en.wikipedia.org/wiki/Augmentation_Research_Center
https://en.wikipedia.org/wiki/NLS_(computer_system)
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Xerox_Alto
https://en.wikipedia.org/wiki/Palo_Alto_Research_Center
https://en.wikipedia.org/wiki/Lilith_(computer)
https://en.wikipedia.org/wiki/Niklaus_Wirth
https://en.wikipedia.org/wiki/ETH_Z%C3%BCrich
https://en.wikipedia.org/wiki/Xerox_Star
https://en.wikipedia.org/wiki/Xerox_Star
https://en.wikipedia.org/wiki/Apple_Lisa
https://en.wikipedia.org/wiki/Lab_mice

“Practically, I have the market all to myself right now”; a Hawley mouse
cost $415.

That year Microsoft made the decision to make the MS-
DOS program Microsoft Word mouse-compatible, and developed the first
PC-compatible mouse. Microsoft's mouse shipped in 1983, thus
beginning Microsoft hardware. However, the mouse remained relatively
obscure until the 1984 appearance of the Macintosh 128K, which included
an updated version of the Lisa Mouse and the Atari ST in 1985.

(4,454 symbols)
https://www.quora.com/How-was-computer-mouse-invented

TEXT 7 WEB BROWSERS

A web browser is a special software program (application) used to
retrieve files from remote web servers. A web browser can open
Web-based HTML files, FTP connections, graphic images and other files.
The browser application 1s smart enough to be able to tell the difference
between these files and display them properly. Browsers are also created to
be “intelligent” enough to be able to “learn” to handle even more types of
files using “plug-ins”.

Web browsers are software. They run on your computer and do not
connect you to the Internet. You use a web browser after you connect to
your Internet Provider. A browser is not an online service like America
Online, MSN or Compuserve. The online service provider provides
telephone numbers and dial up connections. A web browser uses that
connection to reach across the Internet and download files and information.

Now, you should know that America Online purchased the
organization that produced the Netscape browser. Because there was great
confusion about what the Internet and Internet Service Providers are,
the online service «Netscape» was created to take advantage of the
confusion between web browsers and the Internet.

Netscape and Microsoft Internet Explorer are applications, not
Internet Service Providers. There now exists a «Netscape» Internet Service
Provider.

Browser Applications

The most well known browsers are listed below. The order of the
listing of the browsers is in relation to the number of copies of the software
installed on computers. Microsoft Internet Explorer tops the list only
because it i1s automatically installed with the operating system and there are
no options to remove MSIE from the installation in versions of Windows

36

https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/Microsoft_hardware
https://en.wikipedia.org/wiki/Macintosh_128K
https://en.wikipedia.org/wiki/Apple_Mouse#Lisa_Mouse_.28A9M0050.29
https://en.wikipedia.org/wiki/Atari_ST
https://www.quora.com/How-was-computer-mouse-invented

prior to Windows XP. By U.S. Government court order Microsoft has
added a feature to Windows that will allow you to uninstall most of MSIE's
functionality; however, Microsoft completely integrated the browser into
the operating system and completely removing all functions of the browser
would actually damage the operating system, or so was their argument to
the court.
Microsoft Internet Explorer
This browser is automatically installed with Windows. No, you don't
have a choice about it. You CAN set another browser as your default
however.
Netscape Navigator / Communicator
A free download. AOL/Time-Warner owns Netscape now and appears
actively engaged in driving this browser into the ground.
Mozilla
A (better) freeware variation of Netscape. Uses the Gecko engine
originally developed for Mosaic and the later Netscape spin-off. Mozilla
itself is an open source spin-off of the original code that was used to create
Netscape. Mozilla's biggest feature is that it uses tabs for various web
pages, saving desktop space. Developed using open source.
Opera (not free) — Originally a stripped-down browser offering less
functionality but greater page rendering speed.
NCSA Mosaic — The FIRST web browser. No longer under active
development. Last version 3.0 supports WinNT and 2.1.1 for Maclntosh.
Hot Java — From Sun Microsystems. No longer under development
since Solaris 8 and later are shipped with Netscape.
Lynx — Text Only — No graphics, tables or frames, but runs from
DOS.
Browser Functions and Components
Render Engine
Every web browser has an HTML rendering engine designed to read
the embedded HTML tags and use those tags to arrange content and format
the text on the web page. The rendering engine is the guts of the web
browser and no two browsers will render a web page the same way. This is
why any good web developer will test the web page in several web
browsers (Internet Explorer, Netscape, Mozilla) that run on several
different platforms (Windows, Linux, Unix and Mac).
Cache
When a web browser downloads a web page, it stores that web page in
a special location on the computer called the cache. Storing web pages and

37

the content inside them allows the browser to skip re-downloading that
content if the web page have not been changed on the web server. This
speeds up the web browsing experience, particularly when hitting the back
button to return to the previous web page. The cache contains all the files
you have pulled and viewed in your web browser. In most cases, web
pages and files are left on your computer until a certain size limit is
reached. At that point, the browser will delete older files from previous
web sessions and replace them with newer files from whatever web server
you are browsing.

If your caching functions are set to the defaults, you will have
difficulty with dynamically generated pages. Sites such as CNN and
CNBC change the content of their web pages several times a day.
The default settings in the web browser will result in your seeing the first
web page you browse to for as long as the browser is open. You can
change these settings so that in just a minute past when the content
changed at the site, your web browser will pull the new web page.

Bookmarks and Shortcuts

To help you find things again later, most browsers offer a bookmark
function to allow you to store the address of the page in a list of favorite
sites. This list of favorites can be browsed later and when the listed site is
clicked on, the site's web page is retrieved from the server. Netscape calls
these 'bookmarks' and stores them in a bookmarks folder. Internet Explorer
calls them 'shortcuts' and stores them in a Favorites list.

Plug-Ins

Plug-ins are software you can download and install on your computer
that extends the functionality of your web browser. Web browsers were
designed to support this functionality to allow web browsers to become
smarter over time. This plug-in functionality was used to provide
additional capabilities.

Plugins run 'applets' or handle different kinds of media files, such as
audio (files with names ending in .ogg, .wav, .mp3, .rm, .ram and more)
and video (files ending in .avi, .mpeg, .mov and .qt). The Macromedia
Flash plugin runs Flash applets (.swf). Sun's Java plugin runs Java 'applets'

(4,838 symbols)
http://www.inetdaemon.com/tutorials/www/web _browser/

38

http://www.inetdaemon.com/tutorials/www/web_browser/

TEXT8 WHAT IS ANETWORK?

A network is set of computers linked together for the purpose of
communicating and sharing information. The Internetis a global super-
network, so is the local area network (a LAN) at your workplace or your
school, as is the wireless hotspot at your local coffee shop, hotel or library,
the telephone and cellular systems, and the satellite communications in
space.

What defines a network is often defined by who owns and operates the
equipment and the computers that are part of the network. Thus, your
school's network is separate from the Internet.

You know you have a network when you have two or
more computers connected together and they are able to communicate.
Plugged into the back of each computer is some sort of communications
port. Nearly all computers today have one or more serial ports, parallel
ports, Ethernet ports, modem ports, fire wire ports, USB ports and more.
All of these ports can be used in one way or another to
connect computers to a network. The most common type of network port is
an Ethernet port (the square port with the row of connectors on the
bottom). The next most common is a wireless network connection, but that
has no physical connector port.

Xerox was the first company to research and develop a network. Once
upon a time, Xerox printers were extremely expensive, so companies
wanted to share them. Xerox knew their printers were expensive and users
were only able to print from one big computer (a mainframe) attached to
the printer directly. You would print your document, and then walk down
to the building next door where the mainframe was housed, with the
printer, and pick up your printout. Xerox decided that they could sell more
printers if they could make it possible for anyone to use the printer from
any computer. To allow multiple computers to communicate with the
printer, some means of sharing a connection to the printer was needed.
Xerox put Bob Metcalf and others to work on researching and designing
what eventually came to be called Ethernet. Ethernet is now the most
common networking protocol on the planet.

Hosts, End Stations and Workstations

When people talk about networks, they often refer to computers that
are at the edge of the network as hosts, end stations, workstations, or
servers. Its all just the same thing, a computer attached to the network;
though the word HOST has the most general meaning and can include

39

anything attached to the network including hubs, bridges, switches, routers,
access points, firewalls, workstations, servers, mainframes, printers,
scanners, copiers, fax machines and more!

Just about everything electronic that has a processor and which you
would use in an office is 'network capable' today and lots of things that
aren't currently networked probably will be networked in the future.
In many offices the phone system already IS the network (Voice over IP).

Hosts, End Stations and Workstations

When people talk about networks, they often refer to computers that
are at the edge of the network as hosts, end stations, workstations, or
servers. Its all just the same thing, a computer attached to the network;
though the word HOST has the most general meaning and can include
anything attached to the network including hubs, bridges, switches, routers,
access points, firewalls, workstations, servers, mainframes, printers,
scanners, copiers, fax machines and more!

Just about everything electronic that has a processor and which you
would use in an office 1s 'network capable' today and lots of things that
aren't currently networked probably will be networked in the future.
In many offices the phone system already IS the network (Voice over IP).

LAN, MAN, WAN and er.. IPAN??

There are some terms, acronyms actually, that are used to describe the
size and scope of a network: LAN, WAN, MAN. We've added our own
term 'TPAN'

LAN

A Local Area Network (LAN)is wusually a single set of
connected computers that are in a single small location such as a room, a
floor of a building, or the whole building.

MAN

A Metropolitan Area Network (MAN) is a network that encompasses
a city or town. It is usually multiple point-to-point fiber-optic connections
put together by a communications company and leased to their customers,
but a small number of big corporations have built a few of these of their
own and opened them to the local companies with which they do business.
The automotive, travel and insurance industries are just a few examples of
who has built a WAN.

WAN

A Wide Area Network (WAN) is usually composed of all the links
that connect the buildings of a campus together, such as at a University or
at a corporate headquarters. WAN connections can often span miles, so

40

you frequently hear people referring to the 'WAN' connection to an office
half way around the world. Usually, what distinguishes a WAN from a
LAN is that there are one or more links that span a large distance
over serial, T-carrier or ISDN, Frame Relay or ATM links.

IPAN

So what the heck is an [PAN? An IPAN is an Inter-Planetary Area
Network. NASA has built a Deep Space Internet that uses a store-and-
forward communications protocol called Disruption Tolerant Networking
(DTN). The mechanical rovers Spirit and Opportunity on the planet Mars,
were given addresses on a NASA network and NASA uses Internet and
IPAN protocols to communicate with the Mars rovers. While the
communication with the rovers never crosses over the Internet, the NASA
network does have hosts spanning space between the planets Earth and
Mars. They also have probes they have sent into the outer solar system
with which they use IPAN to communicate.

This networking tutorial section will teach you about running an
Internet Protocol (IP)-based network on top of Ethernet. A typical
physically wired network is built with several layers of technologies
layered one top of one another. The TCP-Model and the OSI Model
tutorials will help you understand the layering concepts and you should
probably start there first and come back to this page.

This list starts with the lower layer functions or protocols and works
its way up.

All networks have several layers of functions stacked on top of each
other. Ethernet is used to provide the means to transmit information
encoded in electrical signals across copper wiring between two
computers. Internet Protocol networking software running on the
computers use the Ethernet network to send data back and forth inside IP
packets. The Internet Protocol layer provides the means for the computer to
connect to the network, obtain alogical address, to learn the logical
addresses of other computers and to communicate with the other computers
on the network. Internet Protocol provides the basic network functions.

(5,437 symbols)
http://www.inetdaemon.com/tutorials/networking/

TEXT 9 WHAT IS AN IP ADDRESS?

Every machine on a network has a unique identifier. Just as you would
address a letter to send in the mail, computers use the unique identifier to
send data to specific computers on a network. Most networks today,

41

http://www.inetdaemon.com/tutorials/networking/

including all computers on the Internet, use the TCP/IP protocol as the
standard for how to communicate on the network. In the TCP/IP protocol,
the unique identifier for a computer is called its IP address.

There are two standards for IP addresses: I[P Version 4 (IPv4) and IP
Version 6 (IPv6). All computers with IP addresses have an IPv4 address,
and many are starting to use the new IPv6 address system as well. Here's
what these two address types mean:

« IPv4 uses 32 binary bits to create a single unique address on the
network. An IPv4 address is expressed by four numbers separated by dots.
Each number is the decimal (base-10) representation for an eight-digit
binary (base-2) number, also called an octet. For example: 216.27.61.137

«IPv6 uses 128 binary bits to create a single unique address
on the network. An IPv6 address is expressed by eight groups of
hexadecimal (base-16) numbers separated by colons, as in
2001:¢dba:0000:0000:0000:0000:3257:9652. Groups of numbers that
contain all zeros are often omitted to save space, leaving a colon separator
to mark the gap (as in 2001:cdba::3257:9652).

At the dawn of IPv4 addressing, the Internet was not the large
commercial sensation it is today, and most networks were private and
closed off from other networks around the world. When the Internet
exploded, having only 32 bits to identify a unique Internet address caused
people to panic that we'd run out of IP addresses. Under IPv4, there are
232 possible combinations, which offers just under 4.3 billion unique
addresses. IPv6 raised that to a panic-relieving 2128 possible addresses.
Later, we'll take a closer look at how to understand your computer's [Pv4
or IPv6 addresses.

How does your computer get its IP address? An IP address can be
either dynamic or static. A static address is one that you configure yourself
by editing your computer's network settings. This type of address is rare,
and it can create network issues if you use it without a good understanding
of TCP/IP. Dynamic addresses are the most common. They're assigned by
the Dynamic Host Configuration Protocol (DHCP), a service running on
the network. DHCP typically runs on network hardware such as routers or
dedicated DHCP servers.

Dynamic IP addresses are issued using a leasing system, meaning that
the IP address is only active for a limited time. If the lease expires, the
computer will automatically request a new lease. Sometimes, this means
the computer will get a new IP address, too, especially if the computer was
unplugged from the network between leases. This process is usually

42

http://computer.howstuffworks.com/internet/basics/internet-infrastructure.htm
http://computer.howstuffworks.com/router.htm

transparent to the user unless the computer warns about an IP address
conflict on the network (two computers with the same IP address).
An address conflict is rare, and today's technology typically fixes
the problem automatically.

Next, let's take a closer look at the important parts of an IP address
and the special roles of certain addresses.

IP Classes PREV NEXT

Earlier, you read that IPv4 addresses represent four eight-digit binary
numbers. That means that each number could be 00000000 to 11111111 in
binary, or 0 to 255 in decimal (base-10). In other words, 0.0.0.0 to
255.255.255.255. However, some numbers in that range are reserved for
specific purposes on TCP/IP networks. These reservations are recognized
by the authority on TCP/IP addressing, the Internet Assigned Numbers
Authority (IANA). Four specific reservations include the following:

«0.0.0.0 — This represents the default network, which is the abstract
concept of just being connected to a TCP/IP network.

« 255.255.255.255 — This address is reserved for network broadcasts,
or messages that should go to all computers on the network.

«127.0.0.1 — This is called the loopback address, meaning your
computer's way of identifying itself, whether or not it has an assigned
IP address.

«169.254.0.1 to 169.254.255.254 — This is the Automatic Private
IP Addressing (APIPA) range of addresses assigned automatically when a
computer's unsuccessful getting an address from a DHCP server.

The other IP address reservations are for subnet classes. A subnet
1s a smaller network of computers connected to a larger network through
a router. The subnet can have its own address system so computers on the
same subnet can communicate quickly without sending data across
the larger network. A router on a TCP/IP network, including the Internet,
is configured to recognize one or more subnets and route network traffic
appropriately. The following are the IP addresses reserved for subnets:

«10.0.0.0 to 10.255.255.255 — This falls within the Class A address
range of 1.0.0.0 to 127.0.0.0, in which the first bit is 0.

«172.16.0.0 to 172.31.255.255 — This falls within the Class B address
range of 128.0.0.0 to 191.255.0.0, in which the first two bits are 10.

«192.168.0.0 to 192.168.255.255 — This falls within the Class C range
0f 192.0.0.0 through 223.255.255.0, in which the first three bits are 110.

43

http://computer.howstuffworks.com/internet/basics/question549.htm
http://computer.howstuffworks.com/internet/basics/question5492.htm

« Multicast (formerly called Class D) — The first four bits in the
address are 1110, with addresses ranging from 224.0.0.0 to
239.255.255.255.

« Reserved for future/experimental use (formerly called Class E) —
addresses 240.0.0.0 to 254.255.255.254.

The first three (within Classes A, B and C) are those most used in
creating subnets. Later, we'll see how a subnet uses these addresses.
The TANA has outlined specific uses for multicast addresses within
Internet Engineering Task Force (IETF) document RFC 5771. However, it
hasn't designated a purpose or future plan for Class E addresses since it
reserved the block in its 1989 document RFC 1112. Before IPv6, the
Internet was filled with debate about whether the IANA should release
Class E for general use.

Next, let's see how subnets work and find out who has those
non-reserved IP addresses out on the Internet.

How DHCP Assigns Addresses

When you add a computer to a network, that computer uses a four-
step process to get an IP address from DHCP:

[] Discover — The computer sends out a broadcast message on the
network, hoping to discover a DHCP service provider.

] Offer — Each DHCP provider hears the message, recognizes the
unique hardware address of the computer, and sends a message back
offering its services to that computer.

] Request — The computer selects a DHCP provider from its
offerings and then sends a request to that provider asking for an IP address
assignment.

[] Acknowledge — The targeted DHCP provider acknowledges
the request and issues an IP address to the computer that doesn't match any
other IP addresses currently active on the network

(5,079 symbols)
http://computer.howstuffworks.com/internet/basics/question549.htm

TEXT 10 WHAT IS WI-FI?

First, let's get a couple of points out of the way: Wi-Fi, which rhymes
with the outdated term "hi-fi," has nothing in common with its soundalike.
Hi-fi stood for "high-fidelity" and was used to describe a phonograph/radio
system with excellent sound.

Wi-Fi, by comparison, does not stand for "wireless fidelity" and has
nothing to do with sound. In fact, it really doesn't stand for anything!

44

http://tools.ietf.org/html/rfc5771
http://tools.ietf.org/html/rfc1112
http://computer.howstuffworks.com/internet/basics/question549.htm

It simply represents wireless networking technology that allows you to go
on the Internet without having to plug in any cables.

There's an organization called the Wi-Fi Alliance that actually owns
the Wi-Fi trademark and controls or dictates the technology behind it.

Wi-Fi is everywhere these days, from people's homes to airports,
hotels, libraries and just about every other place where people use their
computers or wireless devices (laptops, smartphones and iPads/tablets).

Here are the main advantages of setting up a wireless network in your
home:

« You can "connect" any and every computer in your home to your
network without having to string cables/wires throughout the house.

« That means you can go on the Internet in any room from a laptop,
desktop or smartphone.

« You can set up an access password that allows a visitor to log in to
your network and will keep others from logging in without your
permission...or knowledge.

« All it takes is a small, affordable piece of hardware called a "router"
and some time to get things working.

Some well-known brands of routers are Belkin, Linksys and Netgear.
You'll find plenty of information on routers online.

The good news is, you can set up a wireless network in your home
pretty easily and quickly these days. It starts with your computer and
grows from there. Here are some of the things you should know as you
start your own network:

Start with your main computer: A wireless network needs to be set
up. That's right: Even though your network will eventually be "wireless,"
to set it up you'll need to use your existing physical connection to the
Internet.

A router comes with special software that has to be loaded on your
computer. The software sets up the connection needed between your
computer, modem and Internet Service Provider&emdash; and once
everything is ready to go, you'll be able to invite and allow others devices
to join your wireless network.

Safety and security. The wireless network broadcasts over a small
area, but it has no boundaries. A next-door neighbor could easily be aware
of your wireless network. That is, anyone close by with a wireless-enabled
device might be able to see that a wireless network is nearby. However,
without the password you create, they will not be able to access it or use it.

45

There are also security settings (which come with the router software)
that will prevent hackers from intercepting your signal.

Wireless with wires. One more thing: Your "wireless" router has
couple of wires, at least two. One is the electrical cord for power; the other
is a cable (typically an Ethernet cable) with a connector that looks like a
large telephone jack and that plugs into your modem. (If your router is a
modem too, it will connect to your computer.)

That may sound funny, but the "wireless" feature has to do with the
devices that will be able to connect wirelessly with the router.

Modem: You probably have a modem now - it's an important part of a
wireless network. You need your modem to connect your computer to the
Internet, and you'll still need it because your router works with your
modem (or, you'll be replacing your modem with a device that is both a
modem AND router).

A "wireless" router. Just as a mailman delivers mail to different
addresses on your street, the router, once it's set up, will deliver an Internet
connection (back and forth) for any computer or device with "wireless"
capability.

Generation gap. Most electronic/computer stores carry a selection of
routers. As with other technologies (cell phones, computers), routers have
gone through several "generations" of development. As of 2013, most
stores advertised "wireless-N" routers as the most common generation,
with "wireless-ac" advertised as the "next" generation. (Before "N" came
Wireless-G and Wireless-B.) As you might guess, the new generation tends
to be better and, in this case, faster.

You'll also see routers that come with the designation "2.4 GHz"
and/or "5 GHz" (gigahertz), which are the radio wave signals a router
emits. What? Radio waves? Yes! That's how the signal is sent throughout
your house and received by compatible wireless devices. If a router is both
2.4 and 5 GHz, it will be called a "dual band" router.

As with anything else related to technology, it helps to do some
research and ask plenty of questions of salespeople and people you know.
With the wireless network fundamentals you just read about, you should be
able find the wireless system that will work best for you.

(3,876 symbols)
http://whatismyipaddress.com/wi-fi

46

http://whatismyipaddress.com/wi-fi

TEXT 11 HOW DOMAIN NAME SERVERS WORK

If you've ever used the Internet, it's a good bet that you've used
the Domain Name System, or DNS, even without realizing it. DNS is a
protocol within the set of standards for how computers exchange data on
the Internet and on many private networks, known as the TCP/IP protocol
suite. Its basic job is to turn a user-friendly domain name like
"howstuffworks.com" into an Internet Protocol (IP) address like
70.42.251.42 that computers use to identify each other on the network.
It's like your computer's GPS for the Internet.

Computers and other network devices on the Internet use an IP
address to route your request to the site you're trying to reach. This is
similar to dialing a phone number to connect to the person you're trying to
call. Thanks to DNS, though, you don't have to keep your own address
book of IP addresses. Instead, you just connect through a domain name
server, also called a DNS server or name server, which manages a massive
database that maps domain names to IP addresses.

Whether you're accessing a Web site or sending e-mail, your computer
uses a DNS server to look up the domain name you're trying to access.
The proper term for this process i1s DNS name resolution, and you would
say that the DNS server resolves the domain name to the IP address.
For example, when you enter "http://www.howstuffworks.com" in your
browser, part of the network connection includes resolving the domain
name "howstuffworks.com" into an IP address, like 70.42.251.42, for
HowStuffWorks' Web servers.

You can always bypass a DNS lookup by entering 70.42.251.42
directly in your browser (give it a try). However, you're probably more
likely to remember "howstuffworks.com" when you want to return later.
In addition, a Web site's IP address can change over time, and some sites
associate multiple IP addresses with a single domain name.

Without DNS servers, the Internet would shut down very quickly.
But how does your computer know what DNS server to use? Typically,
when you connect to your home network, Internet service provider (ISP) or
WiF1 network, the modem or router that assigns your computer's network
address also sends some important network configuration information to
your computer or mobile device. That configuration includes one or more
DNS servers that the device should use when translating DNS names
to IP address.

So far, you've read about some important DNS basics. The rest of this
article dives deeper into domain name servers and name resolution. It even

47

http://computer.howstuffworks.com/internet/basics/internet.htm
http://computer.howstuffworks.com/internet/basics/question549.htm
http://computer.howstuffworks.com/e-mail-messaging/email.htm
http://computer.howstuffworks.com/home-network.htm

includes an introduction to managing your own DNS server. Let's start by
looking at how IP addresses are structured and how that's important to the
name resolution process.

Domain Names

If we had to remember the IP addresses of all our favorite Web sites,
we'd probably go nuts! Human beings are just not that good at
remembering strings of numbers. We are good at remembering words,
however, and that is where domain names come in. You probably have
hundreds of domain names stored in your head, such as:

« howstuffworks.com — our favorite domain name

. google.com — one of the most used domain names in the world

« mit.edu — a popular EDU name

« bbc.co.uk — a three-part domain name using the country code UK

You'll recognize domain names as having strings of characters
separated by dots (periods). The last word in a domain name represents
a top-level domain. These top-level domains are controlled by the [ANA in
what's called the Root Zone Database, which we'll examine more closely
later. The following are some common top-level domains:

« COM — commercial Web sites, though open to everyone

« NET — network Web sites, though open to everyone

« ORG — non-profit organization Web sites, though open to everyone

« EDU — restricted to schools and educational organizations

« MIL — restricted to the U.S. military

« GOV - restricted to the U.S. government

« US, UK, RU and other two-letter country codes — each 1s assigned to
a domain name authority in the respective country

In a domain name, each word and dot combination you add before a
top-level domain indicates a level in the domain structure. Each level refers
to a server or a group of servers that manage that domain level.
For example, "howstuffworks" in our domain name i1s a second-level
domain off the COM top-level domain. An organization may have a
hierarchy of sub-domains further organizing its Internet presence, like
"bbc.co.uk" which is the BBC's domain under CO, an additional level
created by the domain name authority responsible for the UK country code.

The left-most word in the domain name, such as www or mail, is
a host name. It specifies the name of a specific machine (with a specific IP
address) in a domain, typically dedicated to a specific purpose. A given
domain can potentially contain millions of host names as long as they're all
unique to that domain.

48

http://computer.howstuffworks.com/internet/basics/question549.htm
http://computer.howstuffworks.com/internet/basics/question77.htm
http://www.iana.org/domains/root/db/

Because all of the names in a given domain need to be unique, there
has to be some way to control the list and makes sure no duplicates arise.
That's where registrars come in. A registrar is an authority that can assign
domain names directly under one or more top-level domains and register
them with InterNIC, a service of ICANN, which enforces uniqueness of
domain names across the Internet. Each domain registration becomes part
of a central domain registration database known as the whois database.
Network Solutions, Inc. (NSI) was one of the first registrars, and today
companies like GoDaddy.com offer domain registration in addition to
many other Web site and domain management services. [source: InterNIC]

(4,407 symbols)
http://computer.howstuffworks.com/dns.htm

TEXT 12 WHAT IS 3D PRINTING?

3D printing or additive manufacturing is a process of making three
dimensional solid objects from a digital file.

The creation of a 3D printed object is achieved using additive
processes. In an additive process an object is created by laying down
successive layers of material until the object is created. Each of these
layers can be seen as a thinly sliced horizontal cross-section of the eventual
object.

How does 3D printing work?

It all starts with making a virtual design of the object you want to
create. This virtual design is for instance a CAD (Computer Aided Design)
file. This CAD file is created using a 3D modeling application or with a 3D
scanner (to copy an existing object). A 3D scanner can make a 3D digital
copy of an object.

3D scanners

3D scanners use different technologies to generate a 3D model.
Examples are: time-of-flight, structured / modulated light, volumetric
scanning and many more.

Recently, companies like Microsoft and Google enabled their
hardware to perform 3D scanning, for example Microsoft’s Kinect. In
the near future digitizing real objects into 3D models will become as easy
as taking a picture. Future versions of smartphones will probably have
integrated 3D scanners. Currently, prices of 3D scanners range from
expensive professional industrial devices to $30 DIY scanners anyone can
make at home.

49

http://www.internic.net/faqs/domain-names.html
http://computer.howstuffworks.com/dns.htm
http://3dprinting.com/how-to/sardauscan-30-usd-diy-3d-scanner-3d-print/

3D modeling software

3D modeling software also comes in many forms. There’s industrial
grade software that costs thousands a year per license, but also free open
source software, like Blender, for instance. When you have a 3D model,
the next step is to prepare it in order to make it 3D printable.

From 3D model to 3D Printer

You will have to prepare a 3D model before it is ready to be
3D printed. This is what they call slicing. Slicing is dividing a 3D model
into hundreds or thousands of horizontal layers and needs to be done with
software. Sometimes a 3D model can be sliced from within a 3D modeling
software application. It is also possible that you are forced to use a certain
slicing tool for a certain 3D printer. When the 3D model is sliced, you are
ready to feed it to your 3D printer. This can be done via USB, SD or wifi.
It really depends on what brand and type 3D Printer you have.
When a file is uploaded in a 3D printer, the object is ready to be
3D printed layer by layer. The 3D printer reads every slice (2D image) and
creates a three dimensional object.

Processes and technologies

Not all 3D printers use the same technology. There are several ways to
print and all those available are additive, differing mainly in the way layers
are build to create the final object. Some methods use melting or softening
material to produce the layers. Selective laser sintering (SLS) and fused
deposition modeling (FDM) are the most common technologies using this
way of 3D printing. Another method is when we talk about curing a photo-
reactive resin with a UV laser or another similar power source one layer at
a time. The most common technology using this method is called
stereolithography (SLA).

To be more precise: since 2010, the American Society for Testing and
Materials (ASTM) group “ASTM F42 — Additive Manufacturing”,
developed a set of standards that classify the Additive Manufacturing
processes into 7 categories according to Standard Terminology for
Additive Manufacturing Technologies. These seven processes are:

1. Vat Photopolymerisation
. Material Jetting
. Binder Jetting
. Material Extrusion
. Powder Bed Fusion
. Sheet Lamination
. Directed Energy Deposition

~N N B W

50

http://3dprinting.com/blender-tutorials/

Vat Photopolymerisation

A 3D printer based on the Vat Photopolymerisation method has a
container filled with photopolymer resin which is then hardened with
a UV light source.

The most commonly used technology in this processes
1s Stereolithography (SLA). This technology employs a vat of liquid
ultraviolet curable photopolymer resin and an ultraviolet laser to build the
object’s layers one at a time. For each layer, the laser beam traces a cross-
section of the part pattern on the surface of the liquid resin. Exposure to the
ultraviolet laser light cures and solidifies the pattern traced on the resin and
joins it to the layer below.

After the pattern has been traced, the SLA’s elevator platform
descends by a distance equal to the thickness of a single layer, typically
0.05 mm to 0.15 mm (0.002" to 0.006"). Then, a resin-filled blade sweeps
across the cross section of the part, re-coating it with fresh material.
On this new liquid surface, the subsequent layer pattern is traced, joining
the previous layer. The complete three dimensional object is formed by this
project. Stereolithography requires the use of supporting structures which
serve to attach the part to the elevator platform and to hold the object
because it floats in the basin filled with liquid resin. These are removed
manually after the object is finished.

This technique was invented in 1986 by Charles Hull, who also at the
time founded the company, 3D Systems.

Other technologies using Vat Photopolymerisation are the new
ultrafast Continuous Liquid Interface Production or CLIP and marginally
used older Film Transfer Imaging and Solid Ground Curing.

Material Jetting

In this process, material is applied in droplets through a small
diameter nozzle, similar to the way a common inkjet paper printer works,
but it 1s applied layer-by-layer to a build platform making a 3D object and
then hardened by UV light.

Binder Jetting

With binder jetting two materials are used: powder base material and a
liquid binder. In the build chamber, powder is spread in equal layers and
binder is applied through jet nozzles that “glue” the powder particles in the
shape of a programmed 3D object. The finished object is “glued together”
by binder remains in the container with the powder base material. After the
print is finished, the remaining powder is cleaned off and used for
3D printing the next object. This technology was first developed at the

51

http://3dprinting.com/news/carbon3d-reaches-incredible-3d-printing-speeds-with-clip/

Massachusetts Institute of Technology in 1993 and in 1995 Z Corporation
obtained an exclusive license.

Material Extrusion

The most commonly used technology in this process is Fused
deposition modeling (FDM)

The FDM technology works using a plastic filament or metal wire
which 1s unwound from a coil and supplying material to an extrusion
nozzle which can turn the flow on and off. The nozzle is heated to melt the
material and can be moved in both horizontal and vertical directions by a
numerically controlled mechanism, directly controlled by a computer-aided
manufacturing (CAM) software package. The object is produced by
extruding melted material to form layers as the material hardens
immediately after extrusion from the nozzle. This technology is most
widely used with two plastic filament material types: ABS (Acrylonitrile
Butadiene Styrene) and PLA (Polylactic acid) but many other materials are
available ranging in properties from wood filed, conductive, flexible etc.

FDM was invented by Scott Crump in the late 80’s. After patenting
this technology he started the company Stratasys in 1988. The software
that comes with this technology automatically generates support structures
if required. The machine dispenses two materials, one for the model and
one for a disposable support structure.

The term fused deposition modeling and its abbreviation to FDM are
trademarked by Stratasys Inc. The exactly equivalent term, fused filament
fabrication (FFF), was coined by the members of the RepRap project to
give a phrase that would be legally unconstrained in its use.

Powder Bed Fusion

The most commonly used technology in this processes is Selective
laser sintering (SLS).

This technology uses a high power laser to fuse small particles of
plastic, metal, ceramic or glass powders into a mass that has the desired
three dimensional shape. The laser selectively fuses the powdered material
by scanning the cross-sections (or layers) generated by the 3D modeling
program on the surface of a powder bed. After each cross-section is
scanned, the powder bed is lowered by one layer thickness. Then a new
layer of material is applied on top and the process is repeated until the
object is completed.

All untouched powder remains as it is and becomes a support structure
for the object. Therefore there is no need for any support structure which is
an advantage over SLS and SLA. All unused powder can be used for the

52

http://en.wikipedia.org/wiki/Acrylonitrile_butadiene_styrene
http://en.wikipedia.org/wiki/Polylactic_acid
http://3dprinting.com/3dprinters/the-new-stratasys-product-portfolio/

next print. SLS was developed and patented by Dr. Carl Deckard at the
University of Texas in the mid-1980s, under sponsorship of DARPA.
Sheet Lamination
Sheet lamination involves material in sheets which is bound together
with external force. Sheets can be metal, paper or a form of polymer. Metal
sheets are welded together by ultrasonic welding in layers and then CNC
milled into a proper shape. Paper sheets can be used also, but they are
glued by adhesive glue and cut in shape by precise blades. A leading
company in this field is Mcor Technologies.
(7,190 symbols)
http://3dprinting.com/what-is-3d-printing/

TEXT 13 WHAT IS GIS?

This is probably the most asked question posed to those in the
Geographic Information Systems (GIS) field and is probably the hardest to
answer in a succinct and clear manner. GIS is a technological field that
incorporates geographical features with tabular data in order to map,
analyze, and assess real-world problems. The key word to this technology
is Geography — this means that some portion of the data is spatial. In other
words, data that is in some way referenced to locations on the earth.
Coupled with this data is usually tabular data known as attribute data.
Attribute data can be generally defined as additional information about
each of the spatial features. An example of this would be schools.
The actual location of the schools is the spatial data. Additional data such
as the school name, level of education taught, student capacity would make
up the attribute data. It is the partnership of these two data types that
enables GIS to be such an effective problem solving tool through spatial
analysis.

GIS operates on many levels. On the most basic level, geographic
information systems technology is used as computer cartography, that is
for straight forward mapping. The real power of GIS is through using
spatial and statistical methods to analyze attribute and geographic
information. The end result of the analysis can be derivative information,
interpolated information or prioritized information.

GIS Versus Geospatial

There is an increasing trend to use the term geospatial instead of GIS.
What is the difference between geospatial and GIS? Although some may
use the terms interchangeably, there is a distinct difference between the

53

http://3dprinting.com/news/the-mcor-iris-and-its-new-colour-software-colourit-just-amazing/
http://3dprinting.com/what-is-3d-printing/

two in that GIS refers more narrowly to the traditional definition of using
layers of geographic data to produce spatial analysis and derivative maps.
Geospatial 1s more broadly use to refer to all technologies and applications
of geographic data. For example, popular social media sites such as
Foursquare and Facebook use “check-ins” that allow their users the ability
to geographically tag their statuses. While those applications are
considered to be geospatial, they don’t fall underneath the stricter
definition of what makes up a geographic information system.

GIS has already affected most of us in some way without us even
realizing it. If you’ve ever used an Internet mapping program to find
directions, congratulations, you’ve personally used GIS. The new
supermarket chain on the corner was probably located using GIS to
determine the most effective place to meet customer demand.

Uses of GIS

There are numerous ways in which this technology can be used.
The most common ones are:

1. Management of resources
Investigations of the earth’s surface that is scientific in nature
Archeological uses
Planning of locations and management of assets
Urban & regional planning
Criminology matters
An Impact assessment of the environment
The assessment and eventual development of infrastructure

9. Studies of the demographics of an area plus its population

10. Analysis with regards to engineering

Some of the common instances where you will find the GIS in use
include:

1. Emergency response teams normally use GIS when they want to
collect logistics with regards to how they will move in times of natural
disasters.

2. The system also comes in handy when authorities want to
discover any potential wetlands that need to be protected from the harmful
effects brought about by pollution.

3. Companies also take advantage of the GIS so that they may be
able to choose a strategic market location that has not yet been saturated by
other competitors in the particular niche industry.

PN B LD

54

4. Management personnel use this system also so that they can be
able to locate areas that are bound to suffer from catastrophes with regards
to the infrastructure that is in place there.

5. Any potential spread of diseases & other such like pandemic are
usually limited by the use of the GIS since the patterns of their occurrence
1s predicted in sufficient time.

The Development of GIS

One of the most famous early examples of spatial analysis can be
traced back to London in the year 1854 when Dr. John Snow was able to
predict the occurrence of cholera outbreak. Thanks to the study that Snow
released, officials from the government were able to determine the cause of
the disease; which was contaminated water from one of the major pumps.
The map that Snow came up with was very interesting in that it had the
capability of analyzing the phenomena relating to their geographical
positions and this was the firsttime the world was witnessing
this. Photozincography was developed in the earlier years of the 1900s and
this enabled the maps to be divided into various layers as required. In the
initial stages, the process of drawing these maps was lengthy since it
involved free hand but this changed later on with the introduction of the
computer.

The first GIS was created by Dr. Roger Tomlinson and then
introduced in the early 1960s in Canada. During its inception, this system
was mainly meant for collecting, storing and then analyzing the capability
& potential which the land in the rural areas had. Prior to this, mapping by
the use of computers was being used for such cases but this is a method
that had numerous limitations associated to it. By the end of the 80s period,
the use of GIS had already become popular in other related fields which is
why it led to a spur in the growth of the industrial sector. Recently,
designers came up with open source software for GIS so that the brilliant
technology can be enhanced in a much simpler manner while being made
available to all.

Components of GIS

The next step in understanding GIS is to look at each area and how
they work together. These components are:

« Hardware

« Software

« Data

« People

55

https://gislounge.com/photozincography-advances-cartography/

Hardware

Hardware comprises the equipment needed to support the many
activities needed for geospatial analysis ranging from data collection to
data analysis. The central piece of equipment is the workstation, which
runs the GIS software and is the attachment point for ancillary equipment.
Data collection efforts can also require the use of a digitizer for conversion
of hard copy data to digital data and a GPS data logger to collect data in
the field. The use of handheld field technology is also becoming an
important data collection tool in GIS. With the advent of web mapping,
web servers have also become an important piece of equipment.

Software

Different types of software are important. Central to this is the GIS
application package. Such software is essential for creating, editing and
analyzing spatial and attribute data, therefore these packages contain a
myriad of geospatial functions inherent to them. Extensions or add-ons are
software that extends the capabilities of the GIS software package.
Component GIS software is the opposite of application software.
Component GIS seeks to build software applications that meet a specific
purpose and thus are limited in their spatial analysis capabilities. Utilities
are stand-alone programs that perform a specific function. For example, a
file format utility that converts from on type of GIS file to another. There
i1s also web GIS software that helps serve data and interactive maps
through Internet browsers.

Data

Data is the core of any GIS. There are two primary types of data that
are used in GIS: vector and raster data. A geodatabase is a database that is
in some way referenced to locations on the earth. Geodatabases are
grouped into two different types: vector and raster. Vector data is spatial
data represented as points, lines and polygons. Raster data is cell-based
data such as aerial imagery and digital elevation models. Coupled with
this data is usually data known as attribute data. Attribute data generally
defined as additional information about each spatial feature housed in
tabular format. Documentation of GIS datasets is known as metadata.
Metadata contains such information as the coordinate system, when the
data was created, when it was last updated, who created it and how to
contact them and definitions for any of the code attribute data.

People

Well-trained GIS professionals knowledgeable in spatial analysis and
skilled in using GIS software are essential to the GIS process. There are

56

https://gislounge.com/equipment-gis-and-gps/
https://gislounge.com/gis-software-resources/
https://gislounge.com/gis-software-components-examples-using-openmap-and-mapobjects/
https://gislounge.com/web-based-gis/
https://gislounge.com/data-and-gis-resources/
https://gislounge.com/metadata/

three factors to the people component: education, career path, and
networking. The right education is key; taking the right combination of
classes. Selecting the right type of GIS job is important. A person highly
skilled in GIS analysis should not seek a job as a GIS developer if they
haven’t taken the necessary programming classes. Finally, continuous
networking with other GIS professionals is essential for the exchange of
1deas as well as a support community.
(7,159 symbols)
https://www.gislounge.com/what-is-gis/

TEXT 14 WHY PROGRAMMING?

You may already have used software, perhaps for word processing or
spreadsheets, to solve problems. Perhaps now you are curious to learn
how programmers write software. A programis a set of step-by-step
instructions that directs the computer to do the tasks you want it to do and
produce the results you want.

There are at least three good reasons for learning programming;:

o Programming helps you understand computers. The computer is
only a tool. If you learn how to write simple programs, you will gain more
knowledge about how a computer works.

o Writing a few simple programs increases your confidence level.
Many people find great personal satisfaction in creating a set of
instructions that solve a problem.

o Learning programming lets you find out quickly whether you like
programming and whether you have the analytical turn of mind
programmers need. Even if you decide that programming is not for you,
understanding the process certainly will increase your appreciation of what
programmers and computers can do.

A set of rules that provides a way of telling a computer what
operations to perform is called a programming language. There is not,
however, just one programming language; there are many. In this chapter
you will learn about controlling a computer through the process of
programming. You may even discover that you might want to become a
programmer.

An important point before we proceed: You will not be a programmer
when you finish reading this chapter or even when you finish reading the
final chapter. Programming proficiency takes practice and training beyond
the scope of this book. However, you will become acquainted with how
programmers develop solutions to a variety of problems.

57

https://gislounge.com/building-a-career-in-gis/
https://gislounge.com/building-a-career-in-gis/
https://gislounge.com/gis-career-resources/
https://www.gislounge.com/what-is-gis/

What Programmers Do

In general, the programmer's job is to convert problem solutions into
instructions for the computer. That 1s, the programmer prepares
the instructions of a computer program and runs those instructions on the
computer, tests the program to see if it is working properly, and makes
corrections to the program. The programmer also writes a report on the
program. These activities are all done for the purpose of helping a user fill
a need, such as paying employees, billing customers, or admitting students
to college.

The programming activities just described could be done, perhaps, as
solo activities, but a programmer typically interacts with a variety of
people. For example, if a program is part of a system of several programs,
the programmer coordinates with other programmers to make sure that the
programs fit together well. If you were a programmer, you might also have
coordination meetings with users, managers, systems analysts, and with
peers who evaluate your work-just as you evaluate theirs.

Let us turn to the programming process.

The Programming Process

Developing a program involves steps similar to any problem-solving
task. There are five main ingredients in the programming process:

1. Defining the problem

2. Planning the solution

3. Coding the program

4. Testing the program

5. Documenting the program

Let us discuss each of these in turn.

1. Defining the Problem

Suppose that, as a programmer, you are contacted because your
services are needed. You meet with users from the client organization to
analyze the problem, or you meet with a systems analyst who outlines the
project. Specifically, the task of defining the problem consists of
identifying what it is you know (input-given data), and what it is you want
to obtain (output-the result). Eventually, you produce a written agreement
that, among other things, specifies the kind of input, processing, and output
required. This is not a simple process.

58

2. Planning the Solution

Do Something

Start or Stop

Input or Qutput

Direction
of Flow

Figure 1: Flow Chart Symbols and Flow Chart
For Mailing Letter

Two common ways of planning the solution to a problem are to draw
a flowchart and to write pseudocode, or possibly both. Essentially, a
flowchart is a pictorial representation of a step-by-step solution to a
problem. It consists of arrows representing the direction the program takes
and boxes and other symbols representing actions. It is a map of what your
program is going to do and how it is going to do it. The American National
Standards Institute (ANSI) has developed a standard set of flowchart
symbols. Figure 1 shows the symbols and how they might be used in a
simple flowchart of a common everyday act-preparing a letter for mailing.

Pseudocode is an English-like nonstandard language that lets you state
your solution with more precision than you can in plain English but with
less precision than is required when using a formal programming language.
Pseudocode permits you to focus on the program logic without having to
be concerned just yet about the precise syntax of a particular programming
language. However, pseudocode is not executable on the computer.
We will illustrate these later in this chapter, when we focus on language
examples.

59

3. Coding the Program

As the programmer, your next step is to code the program-that is, to
express your solution in a programming language. You will translate the
logic from the flowchart or pseudocode-or some other tool-to a
programming language. As we have already noted, a programming
language is a set of rules that provides a way of instructing the computer
what operations to perform. There are many programming languages:
BASIC, COBOL, Pascal, FORTRAN, and C are some examples. You may
find yourself working with one or more of these. We will discuss the
different types of languages in detail later in this chapter.

Although programming languages operate grammatically, somewhat
like the English language, they are much more precise. To get your
program to work, you have to follow exactly the rules-the syntax-of the
language you are using. Of course, using the language correctly is no
guarantee that your program will work, any more than speaking
grammatically correct English means you know what you are talking
about. The point is that correct use of the language is the required first step.
Then your coded program must be keyed, probably using a terminal or
personal computer, in a form the computer can understand.

One more note here: Programmers usually use a text editor, which is
somewhat like a word processing program, to create a file that contains the
program. However, as a beginner, you will probably want to write your
program code on paper first.

4. Testing the Program

Some experts insist that a well-designed program can be written
correctly the first time. In fact, they assert that there are mathematical ways
to prove that a program is correct. However, the imperfections of the world
are still with us, so most programmers get used to the idea that their newly
written programs probably have a few errors. This is a bit discouraging at
first, since programmers tend to be precise, careful, detail-oriented people
who take pride in their work. Still, there are many opportunities to
introduce mistakes into programs, and you, just as those who have gone
before you, will probably find several of them.

Eventually, after coding the program, you must prepare to test it on
the computer. This step involves these phases:

« Desk-checking. This phase, similar to proofreading, is sometimes
avoided by the programmer who is looking for a shortcut and is eager to
run the program on the computer once it is written. However, with careful
desk-checking you may discover several errors and possibly save yourself

60

time in the long run. In desk-checking you simply sit down and mentally
trace, or check, the logic of the program to attempt to ensure that it is error-
free and workable. Many organizations take this phase a step further with a
walkthrough, a process in which a group of programmers-your peers-
review your program and offer suggestions in a collegial way.

. Translating. A translator is a program that (1) checks the syntax of
your program to make sure the programming language was used correctly,
giving you all the syntax-error messages, called diagnostics, and (2) then
translates your program into a form the computer can understand.
A by-product of the process is that the translator tells you if you have
improperly used the programming language in some way. These types of
mistakes are called syntax errors. The translator produces descriptive error
messages. For instance, if in FORTRAN you mistakenly write
N=2 *(I+J))-which has two closing parentheses instead of one-you will get
a message that says, "UNMATCHED PARENTHESES". (Different
translators may provide different wording for error messages). Programs
are most commonly translated by a compiler. A compiler translates your
entire program at one time. The translation involves your original program,
called a source module, which is transformed by a compiler into an object
module. Prewritten programs from a system library may be added during
the link/load phase, which results in a load module. The load module can
then be executed by the computer.

- Debugging. A term used extensively in programming, debugging
means detecting, locating, and correcting bugs (mistakes), usually by
running the program. These bugs are logic errors, such as telling a
computer to repeat an operation but not telling it how to stop repeating.
In this phase you run the program using test data that you devise. You must
plan the test data carefully to make sure you test every part of the program.

5. Documenting the Program

Documenting is an ongoing, necessary process, although, as many
programmers are, you may be eager to pursue more exciting computer-
centered activities. Documentation is a written detailed description of the
programming cycle and specific facts about the program. Typical program
documentation materials include the origin and nature of the problem, a
brief narrative description of the program, logic tools such as flowcharts
and pseudocode, data-record descriptions, program listings, and testing
results. Comments in the program itself are also considered an essential
part of documentation. Many programmers document as they code.

61

In a broader sense, program documentation can be part of the
documentation for an entire system.

The wise programmer continues to document the program throughout
its design, development, and testing. Documentation is needed to
supplement human memory and to help organize program planning. Also,
documentation is critical to communicate with others who have an interest
in the program, especially other programmers who may be part of a
programming team. And, since turnover is high in the computer industry,
written documentation is needed so that those who come after you can
make any necessary modifications in the program or track down any errors
that you missed.

The Joys of the Field

Although many people make career changes into the computer field,
few choose to leave it. In fact, surveys of computer professionals,
especially programmers, consistently report a high level of job satisfaction.
There are several reasons for this contentment. One is the challenge-most
jobs in the computer industry are not routine. Another is security, since
established computer professionals can usually find work. And that work
pays well-you will probably not be rich, but you should be comfortable.
The computer industry has historically been a rewarding place for women
and minorities. And, finally, the industry holds endless fascination since it
1s always changing.

(9,291 symbols)
http://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading13.htm

TEXT 15 PROGRAMMING LANGUAGES

. Levels of Language

Programming languages are said to be "lower" or "higher," depending
on how close they are to the language the computer itself uses (Os and 1s =
low) or to the language people use (more English-like-high). We will
consider five levels of language. They are numbered 1 through 5 to
correspond to levels, or generations. In terms of ease of use and
capabilities, each generation is an improvement over its predecessors.
The five generations of languages are

1. Machine language
Assembly languages
High-level languages
Very high-level languages
Natural languages

Al

62

http://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading13.htm

Let us look at each of these categories.

Machine Language

Humans do not like to deal in numbers alone-they prefer letters and
words. But, strictly speaking, numbers are what machine language is. This
lowest level of language, machine language, represents data and program
instructions as 1s and Os-binary digits corresponding to the on and off
electrical states in the computer. Each type of computer has its own
machine language. In the early days of computing, programmers had
rudimentary systems for combining numbers to represent instructions such
as add and compare. Primitive by today's standards, the programs were not
convenient for people to read and use. The computer industry quickly
moved to develop assembly languages.

Assembly languages

Today, assembly languages are considered very low level-that is, they
are not as convenient for people to use as more recent languages. At the
time they were developed, however, they were considered a great leap
forward. To replace the Is and Os used in machine language, assembly
languages use mnemonic codes, abbreviations that are easy to remember:
A for Add, C for Compare, MP for Multiply, STO for storing information
in memory, and so on. Although these codes are not English words, they
are still- from the standpoint of human convenience-preferable to numbers
(Os and 1s) alone. Furthermore, assembly languages permit the use of
names- perhaps RATE or TOTAL-for memory locations instead of actual
address numbers. just like machine language, each type of computer has its
own assembly language.

The programmer who uses an assembly language requires a translator
to convert the assembly language program into machine language.
A translator is needed because machine language is the only language the
computer can actually execute. The translator is an assembler program,
also referred to as an assembler. It takes the programs written in assembly
language and turns them into machine language. Programmers need not
worry about the translating aspect; they need only write programs in
assembly language. The translation is taken care of by the assembler.

Although assembly languages represent a step forward, they still have
many disadvantages. A key disadvantage is that assembly language is
detailed in the extreme, making assembly programming repetitive, tedious,
and error prone. Assembly language may be easier to read than machine
language, but it is still tedious.

63

High-Level Languages

The first widespread use of high-level languages in the early 1960s
transformed programming into something quite different from what it had
been. Programs were written in an English-like manner, thus making them
more convenient to use. As a result, a programmer could accomplish more
with less effort, and programs could now direct much more complex tasks.

These so-called third-generation languages spurred the great increase
in data processing that characterized the 1960s and 1970s. During that time
the number of mainframes in use increased from hundreds to tens of
thousands. The impact of third-generation languages on our society has
been enormous.

Of course, a translator is needed to translate the symbolic statements
of a high-level language into computer-executable machine language; this
translator is usually a compiler. There are many compilers for each
language and one for each type of computer. Since the machine language
generated by one computer's COBOL compiler, for instance, is not the
machine language of some other computer, it is necessary to have a
COBOL compiler for each type of computer on which COBOL programs
are to be run. Keep in mind, however, that even though a given program
would be compiled to different machine language versions on different
machines, the source program itself-the COBOL version-can be essentially
identical on each machine.

Some languages are created to serve a specific purpose, such as
controlling industrial robots or creating graphics. Many languages,
however, are extraordinarily flexible and are considered to be general-
purpose. In the past the majority of programming applications were written
in BASIC, FORTRAN, or COBOL-all general-purpose languages.
In addition to these three, another popular high-level language is C, which
we will discuss later.

Very High-Level Languages

Languages called very high-level languages are often known by their
generation number, that is, they are called fourth-generation languages or,
more simply, 4GLs.

Definition

Will the real fourth-generation languages please stand up? There is no
consensus about what constitutes a fourth-generation language. The 4GLs
are essentially shorthand programming languages. An operation that
requires hundreds of lines in a third-generation language such as COBOL

64

typically requires only five to ten lines in a 4GL. However, beyond the
basic criterion of conciseness, 4GLs are difficult to describe.

Characteristics

Fourth-generation languages share some characteristics. The first is
that they make a true break with the prior generation-they are basically
non-procedural. A procedural language tells the computer how a task is
done: Add this, compare that, do this if something is true, and so forth-a
very specific step-by-step process. The first three generations of languages
are all procedural. In a nonprocedural language, the concept changes. Here,
users define only what they want the computer to do; the user does not
provide the details of just how it is to be done. Obviously, it is a lot easier
and faster just to say what you want rather than how to get it. This leads us
to the issue of productivity, a key characteristic of fourth-generation
languages.

Productivity

Folklore has it that fourth-generation languages can improve
productivity by a factor of 5 to 50. The folklore is true. Most experts say
the average improvement factor is about 10-that is, you can be ten times
more productive in a fourth-generation language than in a third-generation
language. Consider this request: Produce a report showing the total units
sold for each product, by customer, in each month and year, and with a
subtotal for each customer. In addition, each new customer must start on a

new page. A 4GL request looks something like this:
TABLE FILE SALES
SUM UNITS BY MONTH BY CUSTOMER BY PRODUCT
ON CUSTOMER SUBTOTAL PAGE BREAK
END

Even though some training is required to do even this much, you can
see that it 1s pretty simple. The third-generation language COBOL,
however, typically requires over 500 statements to fulfill the same request.
If we define productivity as producing equivalent results in less time, then
fourth-generation languages clearly increase productivity.

Downside

Fourth-generation languages are not all peaches and cream and
productivity. The 4GLs are still evolving, and that which is still evolving
cannot be fully defined or standardized. What is more, since many 4GLs
are easy to use, they attract a large number of new users, who may then
overcrowd the computer system. One of the main criticisms is that the new
languages lack the necessary control and flexibility when it comes to
planning how you want the output to look. A common perception of 4GLs

65

is that they do not make efficient use of machine resources; however, the
benefits of getting a program finished more quickly can far outweigh the
extra costs of running it.

Benefits

Fourth-generation languages are beneficial because

o They are results-oriented; they emphasize what instead of how.

o They improve productivity because programs are easy to write
and change.

o They can be used with a minimum of training by both
programmers and nonprogrammers.

o They shield users from needing an awareness of hardware and
program structure.

It was not long ago that few people believed that 4GLs would ever be
able to replace third-generation languages. These 4GL languages are being
used, but in a very limited way.

Query Languages

A variation on fourth-generation languages are query languages,
which can be used to retrieve information from databases. Data is usually
added to databases according to a plan, and planned reports may also be
produced. But what about a user who needs an unscheduled report or a
report that differs somehow from the standard reports? A user can learn a
query language fairly easily and then be able to input a request and receive
the resulting report right on his or her own terminal or personal computer.
A standardized query language, which can be used with several different
commercial database programs, is Structured Query Language, popularly
known as SQL. Other popular query languages are Query-by-Example,
known as QBE, and Intellect.

Natural Languages

The word "natural” has become almost as popular in computing
circles as it has in the supermarket. Fifth-generation languages are, as you
may guess, even more ill-defined than fourth-generation languages. They
are most often called natural languages because of their resemblance to the
"natural" spoken English language. And, to the manager new to computers
for whom these languages are now aimed, natural means human-like.
Instead of being forced to key correct commands and data names in correct
order, a manager tells the computer what to do by keying in his or her own

words.
REPORT THE BASE SALARY, COMMISSIONS AND YEARS OF
SERVICE BROKEN DOWN BY STATE AND CITY FOR SALESCLERKS
IN NEW JERSEY AND MASSACHUSETTS.

66

You can hardly get closer to conversational English than that.
Natural languages excel at easy data access. Indeed, the most common
application for natural languages is interacting with databases.

Choosing a Language
How do you choose the language with which to write your program?
There are several possibilities:

o In a work environment, your manager may decree that everyone
on your project will use a certain language.

o You may use a certain language, particularly in a business
environment, based on the need to interface with other programs; if two
programs are to work together, it is easiest if they are written in the same
language.

o You may choose a language based on its suitability for the task.
For example, a business program that handles large files may be best
written in the business language COBOL.

o Ifaprogram is to be run on different computers, it must be written
in a language that is portable-suitable on each type of computer-so that the
program need be written only once.

o You may be limited by the availability of the language. Not all
languages are available in all installations or on all computers.

o The language may be limited to the expertise of the programmer;
that is, the program may have to be written in a language the available
programmer knows.

o Perhaps the simplest reason, one that applies to many amateur
programmers, 1s that they know the language called BASIC because it
came with-or was inexpensively purchased with-their personal computers.

(9,335 symbols)
http://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading13.htm

TEXT 16 MAJOR PROGRAMMING LANGUAGES

FORTRAN: The First High-Level Language

Developed by IBM and introduced in 1954, FORTRAN-for FORmula
TRANslator-was the first high-level language. FORTRAN is a
scientifically oriented language-in the early days use of the computer was
primarily associated with engineering, mathematical, and scientific
research tasks.

FORTRAN is noted for its brevity, and this characteristic is part of the
reason why it remains popular. This language is very good at serving its

67

http://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading13.htm

primary purpose, which is execution of complex formulas such as those
used in economic analysis and engineering. Although in the past it was
considered limited in regard to file processing or data processing, its
capabilities have been greatly improved.

Not all programs are organized in the same way. Organization varies
according to the language used. In many languages (such as COBOL),
programs are divided into a series of parts. FORTRAN programs are not
composed of different parts (although it is possible to link FORTRAN
programs together); a FORTRAN program consists of statements one after
the other. Different types of data are identified as the data is used.
Descriptions for data records appear in format statements that accompany
the READ and WRITE statements. Figure 5 shows a FORTRAN program
and a sample output from the program.

COBOL.: The Language of Business

IF SALES-AMOUNT IS GREATER THAN SALES-QUOTA
COMPUTE COMMISSION = MAX-RATE * SALES-AMOUNT
ELSE

COMPUTE COMMISSION = MIN-RATE * SALES-AMOUNT.

Once you understand programming principles, it is not too difficult to
add COBOL to your repertoire. COBOL can be used for just about any
task related to business programming; indeed, it is especially suited to
processing alphanumeric data such as street addresses, purchased items,
and dollar amounts-the data of business. However, the feature that makes
COBOL so useful-its English-like appearance and easy readability-is also a
weakness because a COBOL program can be incredibly verbose.
A programmer seldom knocks out a quick COBOL program. In fact, there
is hardly such a thing as a quick COBOL program; there are just too many
program lines to write, even to accomplish a simple task. For speed and
simplicity, BASIC, FORTRAN, and Pascal are probably better bets.

A COBOL program is divided into four parts called divisions.
The identification division identifies the program by name and often
contains helpful comments as well. The environment division describes the
computer on which the program will be compiled and executed. It also
relates each file of the program to the specific physical device, such as the
tape drive or printer, that will read or write the file. The data division
contains details about the data processed by the program, such as type of
characters (whether numeric or alphanumeric), number of characters, and
placement of decimal points. The procedure division contains the
statements that give the computer specific instructions to carry out the
logic of the program.

68

It has been fashionable for some time to criticize COBOL: It is old-
fashioned, cumbersome, and inelegant. In fact, some companies, devoted
to fast, nimble program development, are converting to the more trendy
language C. But COBOL, with more than 30 years of staying power, is still
famous for its clear code, which is easy to read and debug.

Pascal: The Language of Simplicity

Named for Blaise Pascal, the seventeenth-century French
mathematician, Pascal was developed as a teaching language by a Swiss
computer scientist, Niklaus Wirth, and first became available in 1971.
Since that time it has become quite popular, first in Europe and now in the
United States, particularly in universities and colleges offering computer
science programs.

The foremost feature of Pascal is that it is simpler than other
languages -it has fewer features and is less wordy than most. In addition to
the popularity of Pascal in college computer science departments, the
language has also made large inroads in the personal computer market as a
simple yet sophisticated alternative to BASIC. Over the years new versions
have improved on the original capabilities of Pascal. Today, Borland's
Turbo Pascal leads the Pascal world because its designers eliminated most
of the drawbacks of the original Pascal. Turbo Pascal is used by the
business community and 1s often the choice of nonprofessional
programmers who need to write their own programs.

Ada: Named for the Countess

Is any software worth over $25 billion? Not any more, according to
Defense Department experts. In 1974 the U.S. Department of Defense had
spent that amount on all kinds of software for a hodgepodge of languages
for its needs. The answer to this problem turned out to be a new language
called Ada-named for Countess Ada Lovelace, "the first programmer" (see
Appendix B). Sponsored by the Pentagon, Ada was originally intended to
be a standard language for weapons systems, but it has also been used
successfully for commercial applications. Introduced in 1980, Ada has the
support not only of the defense establishment but also of such industry
heavyweights as IBM and Intel, and Ada is even available for some
personal computers. Although some experts have said Ada is too complex,
others say that it is easy to learn and that it will increase productivity.
Indeed, some experts believe that it is by far a superior commercial
language to such standbys as COBOL and FORTRAN.

Widespread use of Ada is considered unlikely by many experts.
Although there are many reasons for this (the military services, for

69

instance, have different levels of enthusiasm for it), probably its size-
which may hinder its use on personal computers-and complexity are the
greatest barriers. Although the Department of Defense is a market in itself,
Ada has not caught on to the extent that Pascal and C have, especially in
the business community.

C, C++, Java, and Javascript

A language invented by Dennis Ritchie at Bell Labs in 1972,
C produces code that approaches assembly language in efficiency while
still offering high-level language features. C was originally designed to
write systems software but is now considered a general-purpose language.
C contains some of the best features from other languages, including
Pascal. C compilers are simple and compact. A key attraction is that it is
independent of the architecture of any particular machine, a fact that
contributes to the portability of C programs. That is, a C program can be
run on more than one type of computer after it has been compiled for that
machine.

Although C is simple and elegant, it is not simple to learn. It was
developed for gifted programmers, and the learning curve may be steep.
Straightforward tasks may be solved easily in C, but complex problems
require mastery of the language.

An interesting side note is that the availability of C on personal
computers has greatly enhanced the value of personal computers for
budding software entrepreneurs. A cottage software industry can use the
same basic tool-the language C-used by established software companies
such as Microsoft and Borland. Today C is has been replaced by its
enhanced cousin, C++. C++ in turn is being challenged by web-aware
languages like Java and Javascript, that look and act a lot like C++, but add
features to support working with networked computers, among other
things.

(5,983 symbols)
http://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading13.htm

TEXT 17 THE HISTORY OF PASCAL

Origins

Pascal grew out of ALGOL, a programming language intended for
scientific computing. Meeting in Zurich, an international committee
designed ALGOL as a platform-independent language. This gave them
more more free rein in the features they could put into it, but also made it
more difficult to write compilers for it. Those were the days when many

70

http://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading13.htm

computers lacked hardware features that we now take for granted. The lack
of compilers on many platforms, combined with its lack of pointers and
many basic data types such as characters, led to ALGOL not being widely
accepted. Scientists and engineers flocked to FORTRAN, a programming
language which was available on many platforms. ALGOL mostly faded
away except as a language for describing algorithms.

Wirth Invents Pascal

In the 1960s, several computer scientists worked on extending
ALGOL. One of these was Dr. Niklaus Wirth of the Swiss Federal Institute
of Technology (ETH-Zurich), a member of the original group that created
ALGOL. In 1971, he published his specification for a highly-structured
language which resembled ALGOL in many ways. He named
it Pascal after the 17th-century French philosopher and mathematician
who built a working mechanical digital computer.

Pascal is very data-oriented, giving the programmer the ability to
define custom data types. With this freedom comes strict type-checking,
which ensured that data types didn't get mixed up. Pascal was intended as a
teaching language, and was widely adopted as such. Pascal is free-flowing,
unlike FORTRAN, and reads very much like a natural language, making it
very easy to understand code written in it.

UCSD Pascal

One of the things that killed ALGOL was the difficulty of creating a
compiler for it. Dr. Wirth avoided this by having his Pascal compiler
compile to an intermediate, platform-independent object code stage.
Another program turned this intermediate code into executable code.

Prof. Ken Bowles at the University of California at San Diego
(UCSD) seized on the opportunity this offered to adapt the Pascal compiler
to the Apple II, the most popular microcomputer of the day. UCSD P-
System became a standard, and was widely used at universities. This was
aided by the low cost of Apple II's compared to mainframes, which were
necessary at the time to run other languages such as FORTRAN. Its impact
on computing can be seen in IBM's advertisements for its revolutionary
Personal Computer, which boasted that the PC supported three operating
systems: Digital Research's CP/M-86, Softech's UCSD P-system, and
MicroSoft's PC-DOS.

Pascal Becomes Standard

By the early 1980's, Pascal has already become widely accepted at
universities. Two things happened to make it even more popular.

71

First, the Educational Testing Service, the company which writes and
administers the principal college entrance exam in the United States,
decided to add a Computer Science exam to its Advanced Placement
exams for high school students. For this exam, it chose the Pascal
language. Because of this, secondary-school students as well as college
students began to learn Pascal. Pascal remained the official language of the
AP exams until 1999, when it was replaced by C++, which was quickly
replaced by Java.

Second, a small company named Borland International came out with
the Turbo Pascal compiler for the IBM Personal Computer. This compiler
was truly revolutionary. It did take some shortcuts and made some
modifications to standard Pascal, but these were minor and led to its
greatest advantage: speed. Turbo Pascal compiled at a dizzying rate:
several thousand lines a minute. At the time, the available compilers for the
PC platform were slow and bloated. When Turbo Pascal came out, it was a
breath of fresh air. Soon, Turbo Pascal became the de facto standard for
programming on the PC. When computing magazines published source
code for utility programs, it was usually in either assembly or Turbo
Pascal.

At the same time, Apple came out with its Macintosh series of
computers. As Pascal was the preeminent structured programming
language of the day, Apple chose Pascal as the standard programming
language for the Mac. When programmers received the API and example
code for Mac programming, it was all in Pascal.

Extensions

From version 1.0 to 7.0 of Turbo Pascal, Borland continued to expand
the language. One of the criticisms of the original version of Pascal was its
lack of separate compilation for modules. Dr. Wirth even created a new
programming language, Modula-2, to address that problem. Borland added
this to Pascal with its units feature.

By version 7.0, many advanced features had been added. One of these
was DPMI (DOS Protected Mode Interface), a way to run DOS programs
in protected mode, gaining extra speed and breaking free of the 640K
barrier for accessing memory under DOS. Turbo Vision, a text-based
windowing system, allowed programmers to create great-looking interfaces
in practically no time at all. Pascal even became object-oriented, as version
5.5 adopted the Apple Object Pascal extensions. When Windows 3.0 came
out, Borland created Turbo Pascal for Windows, bringing the speed and

72

ease of Pascal to the graphical user interface. It seemed that Pascal's future
was secure.

The World Changes

However, this was not so. In the 1970s, Dennis Ritchie and Brian
Kernighan of AT&T Bell Laboratories created the C Programming
Language. Ritchie then collaborated with Ken Thompson to design the
UNIX operating system. AT&T had, at that time, a monopoly on telephone
service in the United States, and was operating under a consent decree
which included being banned from the computer business. AT&T thus
gave away the operating system, with source code, to universities for free.

Thus, a whole generation of computer science students learned Pascal
in the introductory programming courses, then learned C when they delved
into operating systems. Slowly but surely, C began to filter into the
computer programming world.

The killer, ironically enough, was object orientation and the move to
Windows on the PC platform. Bjarne Stroustrop introduced object-
orientation to most of the world when he created C++. Apple created
Object Pascal to handle the buttons and windows and other naturally
object-oriented elements of a windowing operating system. But for most
programmers, the first thing that pops to mind when OOP is mentioned
1s C++.

At the same time, Microsoft Windows adopted C as its standard
programming language. As object orientation and Windows took hold, the
natural code migration path for Windows applications was C++.

Many colleges and universities moved away from Pascal, choosing
C++, or the new Java, for their programming courses. Finally, the AP exam
moved to C++, ending Pascal's dominance in high schools.

So Why Learn Pascal?

Despite its fading away as a de facto standard, Pascal is still extremely
useful. C and C++ are very symbolic languages. Where Pascal chooses
words (e.g. begin-end), C/C++ chooses symbols ({-}). Also, C and C++ are
not strongly-typed languages. In Pascal, mixing types often led to an error.
In C/C++, type-casting and pointer arithmetic is common, making it easy
to crash programs and write in buffer overruns. When the AP exam
switched to C++, only a subset of C++ was adopted. Many features, like
arrays, were considered too dangerous for students, and ETS provided its
own "safe" version of these features. Java corrects many of these problems
of C++, at the cost of slow execution.

73

Another reason: speed and size. The Borland Pascal compiler is still
lightning- fast. Borland has revitalized Pascal for Windows with Delphi, a
Rapid-Application-Development environment. Instead of spending several
hours writing a user interface for a Windows program in C/C++, you could
do it in ten minutes with Delphi's graphical design tools. Delphi is to
Pascal what Visual BASIC did to BASIC.

Also, Pascal remains preferred at many universities, especially
overseas where many students are exposed to computers at school rather
than at home. In addition, Pascal was well-suited for teaching
programming, and remains so. There's less overhead and fewer ways for a
student to get a program into trouble. For teaching simple procedural
programming, Pascal remains the top choice.

Thus, even after C, C++, and Java took over the programming world,
Pascal retains a niche in the market. Many small-scale freeware,
shareware, and open-source programs are written in Pascal/Delphi. So
enjoy learning it while it lasts. It's a great introduction to computer
programming. It's not scary like C, dangerous like C++, or abstract like
Java. In another twenty years, you'll be one of the few computer
programmers to know and appreciate Pascal.

(7,023 symbols)
http://www.bio.vu.nl/thb/course/comp/pascal/history.html

TEXT 18 OBJECT-ORIENTED PROGRAMMING

What is object-orientation in web development, and why is it
important?

At its core, it’s a logic — one we use in daily life. We naturally think of
things as objects with attributes and behaviors, and that determines how we
interact with them. It’s interacting in the abstract, and it’s why OOP can
boost speed and efficiency.

What is abstract interaction?

If you want to change the television channel from your seat, you use a
remote control. That remote control is an object with a number
of attributes and behaviors hidden inside of it. Without an understanding of
those hidden attributes — the microchips, wiring, etc. — you still know and
expect that pressing a button will perform that particular function. You’ve
interacted with the remote control in the abstract, skipping the steps the
remote was designed to carry out. That’s the beauty of OOP — the focus i1s

74

http://www.bio.vu.nl/thb/course/comp/pascal/history.html

on how the objects behave, not the code required to tell them how to
behave.
So, what are objects?

A car is an example of a complex object, with many attributes.
We don’t need to understand all of its internal mechanics, what kind of
engine it has, how the gas makes it run, or even where the gas came from
in order to know how to interact with it. The car’s behaviors have been
made simple for us through object-oriented logic: put the key in the
ignition, and the car turns on and gets us where we need to go.
The attributes that make this possible — all of the car’s parts, electronics,
and engineering — are a “package” we don’t need to break down in order to
understand.

Apply this to software building, and it allows developers to break
down big, complicated projects into compartmentalized objects, program
them to have attributes and behaviors, then essentially set them aside and
focus on programming how the objects interact — a higher level of thinking
that makes writing code less linear and more efficient. Modern, high-level
languages like Python and Ruby are perfect examples of OOP. The fact
that they’re able to be so streamlined gets right to the heart of OOP logic.

Object-oriented programming & back-end development

What is object-oriented programming in terms of how a site is built?
OOP defines most modern server-side scripting languages, which are the
languages back-end developers use to write software and database
technology. This behind-the-scenes, server-side technology tells a website
or web application how to behave, and also builds the architecture for a site
to interact with its database. That scaffolding is how data is delivered and
processed, effectively making it the brain of a website. And that’s where
object-oriented logic comes into play.

If a website’s brain uses object-oriented logic, it’s designed to think of
data as objects. It affects how a site is built from the ground up, how data is
organized, how later growth and maintenance of the site will occur, and
more.

Benefits of object-oriented technology include:

« Ease of software design

o Productivity

 Easy testing, debugging, and maintenance

. It’s reusable

« More thorough data analysis, less development time, and more
accurate coding, thanks to OOP’s inheritance method

75

« Data is safe and secure, with less data corruption, thanks to hiding
and abstraction

o It’s sharable (classes are reusable and can be distributed to other
networks)

The building blocks of object-oriented programming

Objects are central to OOP, but they’re not the only moving part.
Here’s a closer look at the other building blocks, and how they work in
tandem to create back-end code that houses, moves, and manipulates data
from a database into a usable web application.

1. Objects: An object is the core unit of OOP. Objects are uniquely
named and represent an instance of a class. Each object houses different
states (attributes), and shared behaviors, called methods. For example, a
Prius is an object in the class of “cars,” in a subclass of “hybrid cars”.
Its attributes include anything from the number of doors it has to how its
electric component is charged. It’s similar to other cars by its behavior —
it drives — but its attributes are what set it apart.

2. Classes: A class is a blueprint for how an object is built, as well
as being a sort of “parent category” for objects. Using the previous
example, a class dictates the concept of a car — four wheels, an engine, a
body, brakes, etc. It allows certain set criteria to be passed down to all
objects in the class. All varieties of cars behave relatively the same on a
basic level, but its their attributes and methods that make them unique.

3. Inheritance: This is an important aspect of OOP, hinted at above.
By deriving classes from parent classes, behaviors can be passed down to
objects, then more complicated attributes can be added the deeper you go.
For example, breaking a car into subclasses (car — sports car — V8 sports
car) makes it possible to layer in more features without starting from
scratch.

4. Abstraction & Encapsulation: This describes how attributes are
housed and hidden within an object — including its data. Objects are
designed to only reveal the necessary data, allowing software to interact
with the object on a higher level. It’s equal parts security and simplicity.
In the case of car parts, by safely stowing them within the body of an
assembled car, things are less likely to get broken, and users can interact
with the big picture: pressing the gas means go, no questions asked.

Procedural languages vs. Object-oriented languages

Procedural programming (via languages like ColdFusion) is code that
is broken into “procedures” — it’s a different way of thinking about how
code interacts with data that’s more linear. Procedures are functional bits

76

of code that interact with and change data, like little machines that gather
input, process it, then deliver output. With OOP, however, data and
functions (attributes and methods) are bundled together within the object.
This prevents the need for any shared or global data with OOP, which is a
core difference between the two approaches.

Traditional procedural languages like C and Pascal require you to
think in terms of the computer rather than thinking in terms of the problem
you’re trying to solve. For less complicated applications, procedural
languages offer ease and transparency that bundled objects don’t always
allow — something that can make it more difficult for programmers to
analyze smaller bits of code on the tail-end of the development process.

When it comes to creating reusable components in software, OOP is
the clear winner. Reusability leads to efficiency, simplifying programming
and creating “shortcuts” to software design.

(5,312 symbols)
https://www.upwork.com/hiring/development/object-oriented-
programming/

TEXT 19 THE HISTORY OF DATABASE PROCESSING

Database processing was originally used in major corporations and
large organizations as the basis of large transaction-processing systems.
Later, as microcomputers gained popularity, database technology migrated
to micros and was used for single-user, personal database applications.
Next, as micros were connected together in work groups, database
technology moved to the workgroup setting. Finally, databases are being
used today for Internet and intranet applications.

1960: The Organizational Context

The 1nitial application of database technology was to resolve problems
with the file-processing systems. In the mid-1960s, large corporations were
producing data at phenomenal rates in file-processing systems, but the data
were becoming difficult to manage, and new systems were becoming
increasingly difficult to develop. Furthermore, management wanted to be
able to relate the data in one file system to those in another.

The limitations of file processing prevented the easy integration of
data. Database technology, however, held out the promise of a solution to
these problems, and so large companies began to develop organizational
databases, Companies centralized their operational data, such as orders,

77

https://www.upwork.com/hiring/development/object-oriented-programming/
https://www.upwork.com/hiring/development/object-oriented-programming/

inventory, and accounting data, in these databases. The applications were
primarily organization-wide, transaction processing systems.

At first, when the technology was new, database applications were
difficult to develop, and there were many failures. Even those applications
that were successful were slow and unreliable: The computer hardware
could not handle the volume of transactions quickly; the developers had
not yet discovered more efficient ways to store and retrieve data; and the
programmers were still new at accessing databases, and sometimes their
programs did not work correctly.

Companies found another disadvantage of database processing:
vulnerability. If a file-processing system fails, only that particular
application will be out of commission. But if the database fails, all of its
dependent applications will be out of commission.

Gradually, the situation improved. Hardware and software engineers
learned how to build systems powerful enough to support many concurrent
users and fast enough to keep up with the daily workload of transactions.
New ways of controlling, protecting, and backing up the database were
devised. Standard procedures for database processing evolved, and
programmers learned how to write more efficient and more maintainable
code. By the mid-1970s, databases could efficiently and reliably process
organizational applications. Many of those applications are still running
today, more than 25 years after their creation!

1970: The Relational Model

In 1970, E.F. Codd published a landmark paper in which he applied
concepts from a branch of mathematics called relational algebra to the
problem of storing large amounts of data. Codd’s paper started a
movement in the database community that in a few years led to the
definition of the relational database model. This model is a particular way
of structuring and processing a database.

Benefits of the relational model.

The advantage of the relational model is that data are stored in a way
that minimizes duplicated data and eliminates certain types of processing
errors that can occur when data are stored in other ways. Data are stored as
tables, with rows and columns.

According to the relational model, not all tables are equally desirable.
Using a process called normalization a table that is not desirable can be
changed into two or more that are.

78

Another key advantage of the relational model is that columns contain
data that relate one row to another. This makes the relationships among
rows visible to the user.

At first, it was thought that the relational model would enable users to
obtain information from databases without the assistance of MIS
professionals. Part of the rationale of this idea was that tables are simple
constructs that are intuitively understandable. Additionally, since the
relationships are stored in the data, the users would be able to combine
rows when necessary.

It turned out that this process was too difficult for most users. Hence,
the promise of the relational model as a means for non-specialists to access
a database was never realized. In retrospect, the key benefit of the
relational model has turned out to be that it provides a standard way for
specialists (like you!) to structure and process a database.

Resistance to the relational model.

Initially the relational model encountered a good deal of resistance.
Relational database systems require more computer resources, and so at
first they were much slower than the systems based on earlier database
models. Although they were easier to use, the slow response time was
often unacceptable. To some extent, relational DBMS products were
impractical until the 1980s, when faster computer hardware was developed
and the price-performance ratio of computers fell dramatically.

The relational model also seemed foreign to many programmers, who
were accustomed to writing programs in which they processed data one
record at a time. But relational DBMS products process data most naturally
an entire table at a time. Accordingly, programmers had to learn a new way
to think about data processing.

Because of these problems, even though the relational model had
many advantages, it did not gain true popularity until computers became
more powerful. In particular, as microcomputers entered the scene, more
and more CPU cycles could be devoted to a single user. Such power was a
boon to relational DBMS products and set the stage for the nest major
database development.

1980: Object-Oriented DBMS and Microcomputer DBMS
Products

In 1979, a small company called Ashton-Tate introduced a
microcomputer product, dBase II (pronounced “d base two”), and called it
a relational DBMS. In and exceedingly successful promotional tactic,
Ashton-Tate distributed — nearly free of charge — more than 100,000 copies

79

of its product to purchasers of the then new Osborne microcomputers.
Many of the people who bought these computers were pioneers in the
microcomputer industry. They began to invent microcomputer applications
using dBase, and the number of dBase applications grew quickly.
As a result, Ashton-Tate became one of the first major corporations in the
microcomputer industry. Later, Ashton-Tate was purchased by Borland,
which now sells the dBase line of products.

The success of this product, however, confused and confounded the
subject of database processing. The problem was this: According to the
definition prevalent in the late 1970s, dBase II was neither a DBMS nor
relational. In fact, it was a programming language with generalized
file-processing (not database-processing) capabilities. The systems that
were developed with dBase II appeared much more like those in Figure
1-10 that the ones in Figure 1-9. the million or so users of dBase II thought
they were using a relational DBMS when, 1n fact, they were not.

Thus, the terms ‘database management system and relational database
were used loosely at the start of the microcomputer boom. Most of the
people who were processing a microcomputer database were really
managing files and were not receiving the benefits of database processing,
although they did not realize it. Today, the situation has changed as the
microcomputer marketplace has become more mature and sophisticated.
dBase 5 and the dBase products that followed it are truly relational DBMS
products.

Although dBase did pioneer the application of database technology on
microcomputers, at the same time other vendors began to move their
products from the mainframe to the microcomputer. Oracle, Focus, and
Ingress are three examples of DBMS products that were ported down to
microcomputers. They are truly DBMS programs, and most would agree
that they are truly relational as well. In addition, other vendors developed
new relational DBMS products especially for micros. Paradox, Revelation,
MDBS, Helix, and a number of other products fall into this category.

One impact of the move of database technology to the micro was the
dramatic improvement in DBMS user interfaces. Users of microcomputer
systems are generally not MIS professionals, and they will not put up with
the clumsy and awkward user interfaces common on mainframe DBMS
products. Thus, as DBMS products were devised for micros, user
interfaces had to be simplified and made easier to use. This was possible
because micro DBMS products operate on dedicated computers and
because more computer power was available to process the user interface.

80

Today, DBMS products are rich and robust with graphical user interfaces
such as Microsoft Windows.

The combination of microcomputers, the relational model, and vastly
improved user interfaces enabled database technology to move from an
organizational context to a personal-computing context. When this
occurred, the number of sites that used database technology exploded.
In 1980 there were about 10,000 sites suing DBMS products in the United
States. Today there are well over 20 million such sites!

In the late 1980s, a new style of programming called object-oriented
programming (OOP) began to be used, which has a substantially different
orientation from that of traditional programming. In brief, the data
structures processed with OOP are considerably more complex than those
processed with traditional languages. These data structures also are
difficult to store in existing relational DBMS products. As a consequence,
a new category of DBMS products called object-oriented database systems
1s evolving to store and process OOP data structures.

For a variety of reasons, OOP has not yet been widely used for
business information systems. First, it is difficult to use, and it is very
expensive to develop OOP applications. Second, most organizations have
millions or billions of bytes of data already organized in relational
databases, and they are unwilling to bear the cost and risk required to
convert those databases to an ODBMS format. Finally, most ODBMS have
been developed to support engineering applications, and they do not have
features and functions that are appropriate or readily adaptable to business
information applications.

Consequently, for the foreseeable future, ODBMS are likely to occupy
a niche in commercial information systems applications.

1990: Client-Server Database Applications

In the middle to late 1980s, end users began to connect their separated
microcomputers using local area networks (LANs). These networks
enabled computers to send data to one another at previously unimaginable
rates. The first applications of this technology shared peripherals, such as
large-capacity fast disks, expensive printers and plotters, and facilitated
intercomputer communication via electronic mail. In time, however, end
users wanted to share their databases as well, which led to the development
of multi-user database applications on LANS.

The LAN-based multi-user architecture is considerably different from
the multi-user architecture used on mainframe databases. With a
mainframe, only one CPU is involved in database application processing,

81

but with LAN systems, many CPUs can be simultaneously involved.
Because this situation was both advantageous (greater performance) and
more problematic (coordinating) the actions of independent CPUs), it led
to a new style of multi-user database processing called the client-server
database architecture.

Not all database processing on a LAN is client-server processing.
A simple, but less robust, mode of processing is called file-sharing
architecture. A company like Treble Clef could most likely use either type
since it is a small organization with modest processing requirements Larger
workgroups, however, would require client-server processing.

2000: Databases Using Internet Technology

As shown in the Calvert Island Reservations. Center example,
database technology is being used in conjunction with Internet technology
to publish database data on the WWW. This same technology is used to
publish applications over corporate and organizational intranets. Some
experts believe that, in time, all database applications will be delivered
using HTTP, XML, and related technologies — even personal databases that
are “published” to a single person.

Because many database applications will use Internet technology to
publish databases on organizational intranets and department LANSs, it is
incorrect to refer to this category of application as Internet databases.
Rather, this text will employ the phrase databases using Internet
technology instead.

This category stands on the leading edge of database technology
today. XML 1in particular serves the needs of database applications
exceptionally well, and it will likely be the basis of many new database
products and services.

(10,636 symbols)
http://www.kean.edu/~rmelworm/3040-00/LuoDatabaseTimeLine.html

TEXT 20 SOFTWARE DEVELOPMENT LIFE CYCLE

Software Development Life Cycle, SDLC for short, is a well-defined,
structured sequence of stages in software engineering to develop the
intended software product.

SDLC Activities

SDLC provides a series of steps to be followed to design and develop
a software product efficiently. SDLC framework includes the following
steps:

82

http://www.kean.edu/~rmelworm/3040-00/LuoDatabaseTimeLine.html

1. Communication

This is the first step where the user initiates the request for a desired
software product. He contacts the service provider and tries to negotiate the
terms. He submits his request to the service providing organization in
writing.

2. Requirement Gathering

This step onwards the software development team works to carry on
the project. The team holds discussions with various stakeholders from
problem domain and tries to bring out as much information as possible on
their requirements. The requirements are contemplated and segregated into
user requirements, system requirements and functional requirements.
The requirements are collected using a number of practices as given —

« studying the existing or obsolete system and software,

« conducting interviews of users and developers,

. referring to the database or

« collecting answers from the questionnaires.

3. Feasibility Study

After requirement gathering, the team comes up with a rough plan of
software process. At this step the team analyzes if a software can be made
to fulfill all requirements of the user and if there is any possibility of
software being no more useful. It is found out, if the project is financially,
practically and technologically feasible for the organization to take up.
There are many algorithms available, which help the developers to
conclude the feasibility of a software project.

4. System Analysis

At this step the developers decide a roadmap of their plan and try to
bring up the best software model suitable for the project. System analysis
includes Understanding of software product limitations, learning system
related problems or changes to be done in existing systems beforehand,
identifying and addressing the impact of project on organization and
personnel etc. The project team analyzes the scope of the project and plans
the schedule and resources accordingly.

5. Software Design

Next step is to bring down whole knowledge of requirements and
analysis on the desk and design the software product. The inputs from
users and information gathered in requirement gathering phase are the
inputs of this step. The output of this step comes in the form of two
designs; logical design and physical design. Engineers produce meta-data
and data dictionaries, logical diagrams, data-flow diagrams and in some
cases pseudo codes.

83

6. Coding

This step is also known as programming phase. The implementation
of software design starts in terms of writing program code in the suitable
programming language and developing error-free executable programs
efficiently.

7. Testing

An estimate says that 50% of whole software development process
should be tested. Errors may ruin the software from critical level to its own
removal. Software testing is done while coding by the developers and
thorough testing is conducted by testing experts at various levels of code
such as module testing, program testing, product testing, in-house testing
and testing the product at user’s end. Early discovery of errors and their
remedy is the key to reliable software.

8. Integration

Software may need to be integrated with the libraries, databases and
other program(s). This stage of SDLC is involved in the integration of
software with outer world entities.

9. Implementation

This means installing the software on user machines. At times,
software needs post-installation configurations at user end. Software is
tested for portability and adaptability and integration related issues are
solved during implementation.

10. Operation and Maintenance

This phase confirms the software operation in terms of more
efficiency and less errors. If required, the users are trained on, or aided
with the documentation on how to operate the software and how to keep
the software operational. The software is maintained timely by updating
the code according to the changes taking place in user end environment or
technology. This phase may face challenges from hidden bugs and real-
world unidentified problems.

11. Disposition

As time elapses, the software may decline on the performance front.
It may go completely obsolete or may need intense upgradation. Hence a
pressing need to eliminate a major portion of the system arises. This phase
includes archiving data and required software components, closing down
the system, planning disposition activity and terminating system at

appropriate end-of-system time.

(3,903 symbols)
http:/AMmwww.tutorialspoint.com/software engineering/software development life

_cyclehtm

84

http://www.tutorialspoint.com/software_engineering/software_development_life_cycle.htm
http://www.tutorialspoint.com/software_engineering/software_development_life_cycle.htm

TEXT 21 SOFTWARE DEVELOPMENT MODELS

The development models are the various processes or methodologies
that are being selected for the development of the project depending on the
project’s aims and goals. There are many development life cycle models
that have been developed in order to achieve different required objectives.
The models specify the various stages of the process and the order in
which they are carried out.

The selection of model has very high impact on the testing that is
carried out. It will define the what, where and when of our planned testing,
influence regression testing and largely determines which test techniques
to use.

There are various Software development models or methodologies.
They are as follows:

Waterfall model

V model
Incremental model
RAD model
[terative model
Spiral model

. Agile model

Choosing right model for developing of the software product or
application is very important. Based on the model the development and
testing processes are carried out.

Different companies based on the software application or product,
they select the type of development model whichever suits to their
application. But these days in market the ‘Agile Methodology’ is the most
used model. ‘Waterfall Model’ is the very old model. In ‘Waterfall Model’
testing starts only after the development is completed. Because of which
there are many defects and failures which are reported at the end. So,the
cost of fixing these issues are high. Hence, these days people are preferring
‘Agile Model’. In ‘Agile Model’ after every sprint there is a demo-able
feature to the customer. Hence customer can see the features whether they
are satisfying their need or not.

‘V-model’ is also used by many of the companies in their product.
‘V-model” is nothing but ‘Verification’ and ‘Validation” model.
In “V-model’ the developer’s life cycle and tester’s life cycle are mapped
to each other. In this model testing is done side by side of the development.

N LR L —

85

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-rad-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-iterative-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-spiral-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-agile-model-advantages-disadvantages-and-when-to-use-it/

Likewise ‘Incremental model’, ‘RAD model’, ‘Iterative model’ and
‘Spiral model’ are also used based on the requirement of the customer and
need of the product.

1. Waterfall model

The Waterfall Model was first Process Model to be introduced. It is
also referred to as a linear-sequential life cycle model. It is very simple to
understand and use. In a waterfall model, each phase must be completed
fully before the next phase can begin. This type of model is basically used
for the for the project which is small and there are no uncertain
requirements. At the end of each phase, a review takes place to determine
if the project is on the right path and whether or not to continue or discard
the project. In this model the testing starts only after the development is
complete. In waterfall model phases do not overlap.

Advantages of waterfall model:

« This model is simple and easy to understand and use.

. It is easy to manage due to the rigidity of the model — each phase has
specific deliverables and a review process.

« In this model phases are processed and completed one at a time.
Phases do not overlap.

« Waterfall model works well for smaller projects where requirements
are very well understood.

Disadvantages of waterfall model:

« Once an application is in the testing stage, it is very difficult to go
back and change something that was not well-thought out in the concept
stage.

« No working software is produced until late during the life cycle.

« High amounts of risk and uncertainty.

« Not a good model for complex and object-oriented projects.

« Poor model for long and ongoing projects.

« Not suitable for the projects where requirements are at a moderate to
high risk of changing.

2. V-model

V-model means Verification and Validation model. Just like the
waterfall model, the V-Shaped life cycle is a sequential path of execution
of processes. Each phase must be completed before the next phase
begins. Testing of the product is planned in parallel with a corresponding
phase of development.

Advantages of V-model:

« Simple and easy to use.

86

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-a-software-testing/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/

« Testing activities like planning, test designing happens well before
coding. This saves a lot of time. Hence higher chance of success over the
waterfall model.

« Proactive defect tracking — that is defects are found at early stage.

« Avoids the downward flow of the defects.

« Works well for small projects where requirements are easily
understood.

Disadvantages of V-model:

« Very rigid and least flexible.

« Software 1s developed during the implementation phase, so no early
prototypes of the software are produced.

o If any changes happen in midway, then the test documents along
with requirement documents has to be updated.

When to use the V-model:

« The V-shaped model should be used for small to medium sized
projects where requirements are clearly defined and fixed.

« The V-Shaped model should be chosen when ample technical
resources are available with needed technical expertise.

High confidence of customer is required for choosing the V-Shaped
model approach. Since, no prototypes are produced, there is a very high
risk involved in meeting customer expectations.

3. Incremental model

In incremental model the whole requirement is divided into various
builds. Multiple development cycles take place here, making the life cycle
a“multi-waterfall” cycle. Cycles are divided up into smaller, more easily
managed modules. Each module passes through the requirements, design,
implementation and testing phases. A working version of software is
produced during the first module, so you have working software early on
during the software life cycle. Each subsequent release of the module adds
function to the previous release. The process continues till the complete
system is achieved.

In the diagram above when we work incrementally we are adding
piece by piece but expect that each piece is fully finished. Thus keep on
adding the pieces until it’s complete. As in the image above a person has
thought of the application. Then he started building it and in the first
iteration the first module of the application or product is totally ready and
can be demoed to the customers. Likewise in the second iteration the other
module is ready and integrated with the first module. Similarly, in the third

87

http://istqbexamcertification.com/what-is-test-design-or-how-to-specify-test-cases/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-a-software-testing/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/

iteration the whole product is ready and integrated. Hence, the product got
ready step by step.

Advantages of Incremental model:

« Generates working software quickly and early during the software
life cycle.

« This model is more flexible — less costly to change scope and
requirements.

o It is easier to test and debug during a smaller iteration.

« In this model customer can respond to each built.

« Lowers initial delivery cost.

« Easier to manage risk because risky pieces are identified and handled
during it’d iteration.

Disadvantages of Incremental model:

« Needs good planning and design.

« Needs a clear and complete definition of the whole system before it
can be broken down and built incrementally.

« Total cost is higher than waterfall.

When to use the Incremental model:

« This model can be used when the requirements of the complete
system are clearly defined and understood.

« Major requirements must be defined; however, some details can
evolve with time.

« There is a need to get a product to the market early.

« A new technology is being used

« Resources with needed skill set are not available

o There are some high risk features and goals.

4. RAD model

RAD model is Rapid Application Development model. It is a type
of incremental model. In RAD model the components or functions are
developed in parallel as if they were mini projects. The developments are
time boxed, delivered and then assembled into a working prototype. This
can quickly give the customer something to see and use and to provide
feedback regarding the delivery and their requirements.

Advantages of the RAD model:

« Reduced development time.

« Increases reusability of components

« Quick initial reviews occur

« Encourages customer feedback

« Integration from very beginning solves a lot of integration issues.

88

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-rad-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-system-integration-testing/

Disadvantages of RAD model:

« Depends on strong team and individual performances for identifying
business requirements.

« Only system that can be modularized can be built using RAD

« Requires highly skilled developers/designers.

« High dependency on modeling skills

« Inapplicable to cheaper projects as cost of modeling and automated
codegeneration is very high.

When to use RAD model:

« RAD should be used when there is a need to create a system that can
be modularized in 2—-3 months of time.

«It should be used if there’s high availability of designers for
modeling and the budget is high enough to afford their cost along with the
cost of automated code generating tools.

« RAD SDLC model should be chosen only if resources with high
business knowledge are available and there is a need to produce the system
in a short span of time (2—3 months).

5. Iterative model

An iterative life cycle model does not attempt to start with a full
specification of requirements. Instead, development begins by specifying
and implementing just part of the software, which can then be reviewed in
order to identify further requirements. This process is then repeated,
producing a new version of the software for each cycle of the model.

When we work iteratively we create rough product or product piece in
one iteration, then review it and improve it in next iteration and so on until
it’s finished. As shown in the image above, in the first iteration the whole
painting is sketched roughly, then in the second iteration colors are filled
and in the third iteration finishing is done. Hence, in iterative model the
whole product is developed step by step.

Advantages of Iterative model:

o In iterative model we can only create a high-level design of the
application before we actually begin to build the product and define the
design solution for the entire product. Later on we can design and built a
skeleton version of that, and then evolved the design based on what had
been built.

« In iterative model we are building and improving the product step by
step. Hence we can track the defects at early stages. This avoids the
downward flow of the defects.

o In iterative model we can get the reliable user feedback. When
presenting sketches and blueprints of the product to users for their

89

http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-is-iterative-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-are-the-software-development-models/

feedback, we are effectively asking them to imagine how the product will
work.

« In iterative model less time is spent on documenting and more time is
given for designing.

Disadvantages of Iterative model:

« Each phase of an iteration is rigid with no overlaps

« Costly system architecture or design issues may arise because not all
requirements are gathered up front for the entire lifecycle

6. Spiral model

The spiral model is similar to the incremental model, with more
emphasis placed on risk analysis. The spiral model has four phases:
Planning, Risk Analysis, Engineering and Evaluation. A software project
repeatedly passes through these phases in iterations (called Spirals in this
model). The baseline spiral, starting in the planning phase, requirements
are gathered and risk is assessed. Each subsequent spirals builds on the
baseline spiral.

Advantages of Spiral model:

« High amount of risk analysis hence, avoidance of Risk is enhanced.

« Good for large and mission-critical projects.

« Strong approval and documentation control.

« Additional Functionality can be added at a later date.

« Software is produced early in the software life cycle.

Disadvantages of Spiral model:

« Can be a costly model to use.

« Risk analysis requires highly specific expertise.

« Project’s success is highly dependent on the risk analysis phase.

« Doesn’t work well for smaller projects.

When to use Spiral model:

« When costs and risk evaluation is important

« For medium to high-risk projects

« Long-term project commitment unwise because of potential changes
to economic priorities

« Users are unsure of their needs

« Requirements are complex

« New product line

« Significant changes are expected (research and exploration)

(9,666 symbols)
http://istgbexamcertification.com/what-are-the-software-development-
models/

90

http://istqbexamcertification.com/what-is-spiral-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-are-the-software-development-models/

TEXT 22 WHAT IS EXTREME PROGRAMMING?

Extreme Programming is a discipline of software development based
on values of simplicity, communication, feedback, courage, and respect.
It works by bringing the whole team together in the presence of simple
practices, with enough feedback to enable the team to see where they are
and to tune the practices to their unique situation.

Basic Extreme Programming

In Extreme Programming, every contributor to the project is an
integral part of the “Whole Team”. The team forms around a business
representative called “the Customer”, who sits with the team and works
with them daily.

Extreme Programming teams use a simple form of planning and
tracking to decide what should be done next and to predict when the
project will be done. Focused on business value, the team produces the
software in a series of small fully-integrated releases that pass all the tests
the Customer has defined.

Extreme Programmers work together in pairs and as a group, with
simple design and obsessively tested code, improving the design
continually to keep it always just right for the current needs.

The Extreme Programming team keeps the system integrated and
running all the time. The programmers write all production code in pairs,
and all work together all the time. They code in a consistent style so that
everyone can understand and improve all the code as needed.

Extreme Programming is about team responsibility for all code, for
coding in a consistent pattern so that everyone can read everyone’s code,
about keeping the system running and integrated all the time.

The Extreme Programming team shares a common and simple picture
of what the system looks like. Everyone works at a pace that can be
sustained indefinitely.

Core Practices Whole Team

All the contributors to an XP project sit together, members of one
team. This team must include a business representative — the “Customer” —
who provides the requirements, sets the priorities, and steers the project.
It’s best if the Customer or one of her aides is a real end user who knows
the domain and what is needed. The team will of course have
programmers. The team may include testers, who help the Customer define
the customer acceptance tests. Analysts may serve as helpers to the
Customer, helping to define the requirements. There is commonly a coach,

91

http://ronjeffries.com/xprog/what-is-extreme-programming/#whole

who helps the team keep on track, and facilitates the process. There may be
a manager, providing resources, handling external communication,
coordinating activities. None of these roles is necessarily the exclusive
property of just one individual: Everyone on an XP team contributes in any
way that they can. The best teams have no specialists, only general
contributors with special skills.

Planning Game

XP planning addresses two key questions in software development:
predicting what will be accomplished by the due date, and determining
what to do next. The emphasis is on steering the project — which is quite
straightforward — rather than on exact prediction of what will be needed
and how long it will take — which is quite difficult. There are two key
planning steps in XP, addressing these two questions:

Release Planningis a practice where the Customer presents the
desired features to the programmers, and the programmers estimate their
difficulty. With the cost estimates in hand, and with knowledge of the
importance of the features, the Customer lays out a plan for the project.
Initial release plans are necessarily imprecise: neither the priorities nor the
estimates are truly solid, and until the team begins to work, we won’t know
just how fast they will go. Even the first release plan is accurate enough for
decision making, however, and XP teams revise the release plan regularly.

Iteration Planning is the practice whereby the team is given direction
every couple of weeks. XP teams build software in two-week “iterations”,
delivering running useful software at the end of each iteration. During
Iteration Planning, the Customer presents the features desired for the next
two weeks. The programmers break them down into tasks, and estimate
their cost (at a finer level of detail than in Release Planning). Based on the
amount of work accomplished in the previous iteration, the team signs up
for what will be undertaken in the current iteration.

These planning steps are very simple, yet they provide very good
information and excellent steering control in the hands of the Customer.
Every couple of weeks, the amount of progress is entirely visible. There is
no “ninety percent done” in XP: a feature story was completed, or it was
not. This focus on visibility results in a nice little paradox: on the one hand,
with so much visibility, the Customer is in a position to cancel the project
if progress is not sufficient. On the other hand, progress is so visible, and
the ability to decide what will be done next is so complete, that XP projects
tend to deliver more of what is needed, with less pressure and stress.

92

Customer Tests

As part of presenting each desired feature, the XP Customer defines
one or more automated acceptance tests to show that the feature is
working. The team builds these tests and uses them to prove to themselves,
and to the customer, that the feature is implemented correctly. Automation
1s important because in the press of time, manual tests are skipped. That’s
like turning off your lights when the night gets darkest.

The best XP teams treat their customer tests the same way they do
programmer tests: once the test runs, the team keeps it running correctly
thereafter. This means that the system only improves, always notching
forward, never backsliding.

Small Releases

XP teams practice small releases in two important ways:

First, the team releases running, tested software, delivering business
value chosen by the Customer, every iteration. The Customer can use this
software for any purpose, whether evaluation or even release to end users
(highly recommended). The most important aspect is that the software is
visible, and given to the customer, at the end of every iteration. This keeps
everything open and tangible.

Second, XP teams release to their end users frequently as well. XP
Web projects release as often as daily, in house projects monthly or more
frequently. Even shrink-wrapped products are shipped as often as
quarterly.

It may seem impossible to create good versions this often, but XP
teams all over are doing it all the time.

Simple Design

XP teams build software to a simple but always adequate design. They
start simple, and through programmer testing and design improvement,
they keep it that way. An XP team keeps the design exactly suited for the
current functionality of the system. There is no wasted motion, and the
software 1s always ready for what’s next.

Design in XP 1s not a one-time thing, or an up-front thing, it is an all-
the-time thing. There are design steps in release planning and iteration
planning, plus teams engage in quick design sessions and design revisions
through refactoring, through the course of the entire project. In an
incremental, iterative process like Extreme Programming, good design is
essential. That’s why there 1s so much focus on design throughout the
course of the entire development.

93

http://ronjeffries.com/xprog/what-is-extreme-programming/#test
http://ronjeffries.com/xprog/what-is-extreme-programming/#test
http://ronjeffries.com/xprog/what-is-extreme-programming/#design

Pair Programming

All production software in XP is built by two programmers, sitting
side by side, at the same machine. This practice ensures that all production
code is reviewed by at least one other programmer, and results in better
design, better testing, and better code.

It may seem inefficient to have two programmers doing ‘“‘one
programmer’s job”, but the reverse is true. Research into pair programming
shows that pairing produces better code in about the same time as
programmers working singly. That’s right: two heads really are better
than one!

Some programmers object to pair programming without ever trying it.
It does take some practice to do well, and you need to do it well for a few
weeks to see the results. Ninety percent of programmers who learn pair
programming prefer it, so we highly recommend it to all teams.

Pairing, in addition to providing better code and tests, also serves to
communicate knowledge throughout the team. As pairs switch, everyone
gets the benefits of everyone’s specialized knowledge. Programmers learn,
their skills improve, they become more valuable to the team and to the
company. Pairing, even on its own outside of XP, is a big win for
everyone.

Test-Driven Development

Extreme Programming is obsessed with feedback, and in software
development, good feedback requires good testing. Top XP teams practice
“test-driven development”, working in very short cycles of adding a test,
then making it work. Almost effortlessly, teams produce code with nearly
100 percent test coverage, which i1s a great step forward in most shops.
(If your programmers are already doing even more sophisticated testing,
more power to you. Keep it up, it can only help!)

It isn’t enough to write tests: you have to run them. Here, too, Extreme
Programming is extreme. These “programmer tests”, or “unit tests” are all
collected together, and every time any programmer releases any code to the
repository (and pairs typically release twice a day or more), every single
one of the programmer tests must run correctly. One hundred percent, all
the time! This means that programmers get immediate feedback on how
they’re doing. Additionally, these tests provide invaluable support as the
software design is improved.

Design Improvement (Refactoring)

Extreme Programming focuses on delivering business value in every
iteration. To accomplish this over the course of the whole project,

94

the software must be well-designed. The alternative would be to slow
down and ultimately get stuck. So XP uses a process of continuous design
improvement called Refactoring, from the title of Martin Fowler’s book,
“Refactoring: Improving the Design of Existing Code”.

The refactoring process focuses on removal of duplication (a sure sign
of poor design), and on increasing the “cohesion” of the code, while
lowering the “coupling”. High cohesion and low coupling have been
recognized as the hallmarks of well-designed code for at least thirty years.
The result is that XP teams start with a good, simple design, and always
have a good, simple design for the software. This lets them sustain their
development speed, and in fact generally increase speed as the project goes
forward.

Refactoring is, of course, strongly supported by comprehensive testing
to be sure that as the design evolves, nothing is broken. Thus the customer
tests and programmer tests are a critical enabling factor. The XP practices
support each other: they are stronger together than separately.

Continuous Integration

Extreme Programming teams keep the system fully integrated at all
times. We say that daily builds are for wimps: XP teams build multiple
times per day. (One XP team of forty people builds at least eight or ten
times per day!)

The benefit of this practice can be seen by thinking back on projects
you may have heard about (or even been a part of) where the build process
was weekly or less frequently, and usually led to “integration hell”, where
everything broke and no one knew why.

Infrequent integration leads to serious problems on a software project.
First of all, although integration is critical to shipping good working code,
the team is not practiced at it, and often it is delegated to people who are
not familiar with the whole system. Second, infrequently integrated code is
often — I would say usually — buggy code. Problems creep in at integration
time that are not detected by any of the testing that takes place on an
unintegrated system. Third, weak integration process leads to long code
freezes. Code freezes mean that you have long time periods when the
programmers could be working on important shippable features, but that
those features must be held back. This weakens your position in the
market, or with your end users.

Collective Code Ownership

On an Extreme Programming project, any pair of programmers can
improve any code at any time. This means that all code gets the benefit of

95

http://www.amazon.com/exec/obidos/ASIN/0201485672/armaties
http://ronjeffries.com/xprog/what-is-extreme-programming/#customer
http://ronjeffries.com/xprog/what-is-extreme-programming/#customer
http://ronjeffries.com/xprog/what-is-extreme-programming/#test

many people’s attention, which increases code quality and reduces defects.
There is another important benefit as well: when code is owned by
individuals, required features are often put in the wrong place, as one
programmer discovers that he needs a feature somewhere in code that he
does not own. The owner is too busy to do it, so the programmer puts the
feature in his own code, where it does not belong. This leads to ugly, hard-
to-maintain code, full of duplication and with low (bad) cohesion.

Collective ownership could be a problem if people worked blindly on
code they did not understand. XP avoids these problems through two key
techniques: the programmer tests catch mistakes, and pair programming
means that the best way to work on unfamiliar code is to pair with the
expert. In addition to ensuring good modifications when needed, this
practice spreads knowledge throughout the team.

Coding Standard

XP teams follow a common coding standard, so that all the code in the
system looks as if it was written by a single — very competent — individual.
The specifics of the standard are not important: what is important is that all
the code looks familiar, in support of collective ownership.

Metaphor

Extreme Programming teams develop a common vision of how the
program works, which we call the “metaphor”. At its best, the metaphor is
a simple evocative description of how the program works, such as “this
program works like a hive of bees, going out for pollen and bringing it
back to the hive” as a description for an agent-based information retrieval
system.

Sometimes a sufficiently poetic metaphor does not arise. In any case,
with or without vivid imagery, XP teams use a common system of names
to be sure that everyone understands how the system works and where to
look to find the functionality you’re looking for, or to find the right place
to put the functionality you’re about to add.

Sustainable Pace

Extreme Programming teams are in it for the long term. They work
hard, and at a pace that can be sustained indefinitely. This means that they
work overtime when it is effective, and that they normally work in such a
way as to maximize productivity week in and week out. It’s pretty well
understood these days that death march projects are neither productive nor
produce quality software. XP teams are in it to win, not to die.

96

http://ronjeffries.com/xprog/what-is-extreme-programming/#test
http://ronjeffries.com/xprog/what-is-extreme-programming/#pair

Conclusion

Extreme Programming is a discipline of software development based
on values of simplicity, communication, feedback, and courage. It works
by bringing the whole team together in the presence of simple practices,
with enough feedback to enable the team to see where they are and to tune

the practices to their unique situation.
(11,997 symbols)
http://ronjeffries.com/xprog/what-is-extreme-programming/

TEXT 23 SOFTWARE TESTING - METHODS

There are different methods that can be used for software testing. This
chapter briefly describes the methods available.

Black-Box Testing

The technique of testing without having any knowledge of the interior
workings of the application i1s called black-box testing. The tester is
oblivious to the system architecture and does not have access to the source
code. Typically, while performing a black-box test, a tester will interact
with the system's user interface by providing inputs and examining outputs
without knowing how and where the inputs are worked upon.

The following table lists the advantages and disadvantages of black-
box testing.

Advantages Disadvantages

« Well suited and efficient for large « Limited coverage, since
code segments. only a selected number of test

« Code access 1s not required. scenarios 1s actually

« Clearly separates user's performed.
perspective from the developer's « Inefficient testing, due
perspective through visibly defined to the fact that the tester only
roles. has limited knowledge about

o Large numbers of moderately an application.
skilled testers can test the application « Blind coverage, since
with no knowledge of implementation, the tester cannot target
programming language, or operating specific code segments or
systems. error-prone areas.

« The test cases are
difficult to design.

97

http://ronjeffries.com/xprog/what-is-extreme-programming/

White-Box Testing

White-box testing is the detailed investigation of internal logic and
structure of the code. White-box testing is also called glass testing
or open-box testing. In order to perform white-box testing on an
application, a tester needs to know the internal workings of the code.

The tester needs to have a look inside the source code and find out
which unit/chunk of the code is behaving inappropriately.

The following table lists the advantages and disadvantages of white-
box testing.

Advantages Disadvantages

« As the tester has knowledge « Due to the fact that a skilled
of the source code, it becomes tester is needed to perform white-
very easy to find out which type box testing, the costs are increased.
of data can help in testing the « Sometimes it is impossible to
application effectively. look into every nook and corner to

« It helps in optimizing the find out hidden errors that may
code. create problems, as many paths will

« Extra lines of code can be go untested.
removed which can bring in o It is difficult to maintain
hidden defects. white-box testing, as it requires

« Due to the tester's specialized tools like code analyzers
knowledge about the code, and debugging tools.

maximum coverage is attained
during test scenario writing.

Grey-Box Testing

Grey-box testing is a technique to test the application with having a
limited knowledge of the internal workings of an application. In software
testing, the phrase the more you know, the better carries a lot of weight
while testing an application.

Mastering the domain of a system always gives the tester an edge over
someone with limited domain knowledge. Unlike black-box testing, where
the tester only tests the application's user interface; in grey-box testing, the
tester has access to design documents and the database. Having this
knowledge, a tester can prepare better test data and test scenarios while
making a test plan.

98

Advantages

« Offers combined benefits of
black-box and white-box testing
wherever possible.

« Grey box testers don't rely on

the source code; instead they rely on

interface definition and functional
specifications.

« Based on the limited
information available, a grey-box
tester can design excellent test
scenarios especially around
communication protocols and data
type handling.

o The test is done from the

point of view of the user and not the

designer.

Disadvantages

. Since the access to source
code is not available, the ability to
go over the code and test coverage
1s limited.

« The tests can be redundant if
the software designer has already
run a test case.

« Testing every possible input
stream is unrealistic because it
would take an unreasonable
amount of time; therefore, many
program paths will go untested.

A Comparison of Testing Methods

Black-Box Testing

The internal workings

Grey-Box Testing

The tester has limited

White-Box Testing

Tester has full

of an application need knowledge of the knowledge of the
not be known. internal workings of the internal workings of
application. the application.

Also known as closed-
box testing, data-
driven testing, or
functional testing.

Also known as
translucent testing, as
the tester has limited
knowledge of the

Also known as clear-

box testing, structural
testing, or code-based
testing.

insides of the

application.

Performed by end-
users and also by
testers and developers.

Performed by end-users
and also by testers and
developers.

Normally done by
testers and
developers.

99

Black-Box Testing Grey-Box Testing White-Box Testing

Testing is based on Testing is done on the Internal workings are
external expectations — basis of high-level fully known and the
Internal behavior of database diagrams and tester can design test
the application is data flow diagrams. data accordingly.
unknown.

It is exhaustive and the Partly time-consuming The most exhaustive
least time-consuming. and exhaustive. and time-consuming
type of testing.

Not suited for Not suited for algorithm Suited for algorithm
algorithm testing. testing. testing.
This can only be done Data domains and Data domains and
by trial-and-error internal boundaries can internal boundaries
method. be tested, if known. can be better tested.
(4,448 symbols)
http://www.tutorialspoint.com/software_testing/software_testing_meth
ods.htm

TEXT 24 MICROPROCESSORS: PAST, PRESENT
AND FUTURE

Unlike many other technologies that fed our imaginations and then
faded away, the computer has transformed our society. There can be little
doubt that it will continue to do so for many decades to come. The engine
driving this ongoing revolution is the microprocessor. These silicon chips
have led to countless inventions, such as portable computers and fax
machines, and have added intelligence to modern automobiles and
wristwatches. Astonishingly, their performance has improved 25,000 times
over since their invention. If the microprocessor continues to improve at its
current rate, one cannot help but suggest that 25 years from now these
chips will empower revolutionary software to compute wonderful things.

Smaller, Faster, Cheaper

Two inventions sparked the computer revolution. The first was the so-
called stored program concept. Every computer system since the late 1940s

100

http://www.tutorialspoint.com/software_testing/software_testing_methods.htm
http://www.tutorialspoint.com/software_testing/software_testing_methods.htm

has adhered to this model, which prescribes a processor for crunching
numbers and a memory for storing both data and programs. The advantage
in such a system is that, because stored programs can be -easily
interchanged, the same hardware can perform a variety of tasks.
Had computers not been given this flexibility, it is probable that they
would not have met with such widespread use. Also, during the late 1940s,
researchers invented the transistor. These silicon switches were much
smaller than the vacuum tubes used in early circuitry. As such, they
enabled workers to create smaller — and faster-electronics.

More than a decade passed before the stored program design and
transistors were brought together in the same machine, and it was not until
1971 that the most significant pairing — the Intel 4004 —came about. This
processor was the first to be built on a single silicon chip, which was no
larger than a child's fingernail. Because of its tiny size, it was dubbed a
microprocessor. And because it was a single chip, the Intel 4004 was the
first processor that could be made inexpensively in bulk.

The method manufacturers have used to mass-produce micropro-
cessors since then is much like baking a pizza: the dough, in this case
silicon, starts thin and round. Chemical toppings are added, and the
assembly goes into an oven. Heat transforms the toppings into transistors,
conductors and insulators. Not surprisingly, the process — which is repeated
perhaps 20 times — is considerably more demanding than baking a pizza.
One dust particle can damage the tiny transistors. So, too, vibrations from a
passing truck can throw the ingredients out of alignment, ruining the end
product. But provided that does not happen, the resulting wafer is divided
into individual pieces, called chips, and served to customers.

Although this basic recipe is still followed, the production line has
made ever cheaper, faster chips over time by churning out larger wafers
and smaller transistors. This trend reveals an important principle of
microprocessor economics: the more chips made per wafer, the less
expensive they are. Larger chips are faster than smaller ones because they
can hold more transistors. The recent Intel P6, for example, contains 5.5
million transistors and is much larger than the Intel 4004, which had a
mere 2,300 transistors. But larger chips are also more likely to contain
flaws. Balancing cost and performance, then, is a significant part of the art
of chip design.

Most recently, microprocessors have become more powerful, thanks
to a change in the design approach. Following the lead of researchers at
universities and laboratories across the U.S., commercial chip designers

101

now take a quantitative approach to computer architecture. Careful
experiments precede hardware development, and engineers use sensible
metrics to judge their success. Computer companies acted in concert to
adopt this design strategy during the 1980s, and as a result, the rate of
improvement in microprocessor technology has risen from 3 5 percent a
year only a decade ago to its current high of approximately 55 percent a
year, or almost 4 percent each month. Processors are now three times faster
than had been predicted in the early 1980s; it is as if our wish was granted,
and we now have machines from the year 2000.

Pipelined, Superscalar and Parallel

In addition to progress made on the -L production line and in silicon
technology, microprocessors have benefited from recent gains on the
drawing board. These breakthroughs will undoubtedly lead to further
advancements in the near future. One key technique is called pipelining.
Anyone who has done laundry has intuitively used this tactic.
The nonpipelined approach is as follows: place a load of dirty clothes in
the washer. When the washer is done, place the wet load into the dryer.
When the dryer is finished, fold the clothes. After the clothes are put away,
start all over again. If it takes an hour to do one load this way, 20 loads
take 20 hours.

The pipelined approach is much quicker. As soon as the first load is in
the dryer, the second dirty load goes into the washer, and so on. All the
stages operate concurrently. The pipelining paradox is that it takes the
same amount of time to dean a single dirty sock by either method.
Yet pipelining is faster in that more loads are finished per hour. In fact,
assuming that each stage takes the same amount of time, the time saved by
pipelining is proportional to the number of stages involved. In our
example, pipelined laundry has four stages, so it would be nearly four
times faster than nonpipelined laundry. Twenty loads would take roughly
five hours.

Similarly, pipelining makes for much faster microprocessors. Chip
designers pipeline the instructions, or low-level commands, given to the
hardware. The first pipelined microprocessors used a five-stage pipeline.
(The number of stages completed each second is given by the so-called
dock rate. A personal computer with a 100-megahertz dock then executes
100 million stages per second.) Because the speedup from pipelining
equals the number of stages, recent microprocessors have adopted eight or
more stage pipelines. One 1995 microprocessor uses this deeper pipeline to
achieve a 300-megahertz clock rate. As machines head toward the next

102

century, we can expect pipelines having even more stages and higher dock
rates.

Also in the interest of making faster chips, designers have begun to
include more hardware to process more tasks at each stage of a pipeline.
The buzzword "superscalar" is commonly used to describe this approach.
A superscalar laundromat, for example, would use a professional machine
that could, say, wash three loads at once. Modern superscalar
microprocessors try to perform anywhere from three to six instructions in
each stage. Hence, a 250-megahertz, four-way superscalar microprocessor
can execute a billion nstructions per second. A 2Ist-century micro-
processor may well launch up to dozens of instructions in each stage.

Despite such potential, improvements in processing chips are
ineffectual unless they are matched by similar gains in memory chips.
Since random-access memory (RAM) on a chip became widely available
in the mid-1970s, its capacity has grown fourfold every three years.
But memory speed has not increased at anywhere near this rate. The gap
between the top speed of processors and the top speed of memories is
widening.

One popular aid 1s to place a small memory, called a cache, right on
the microprocessor itself. The cache holds those segments of a program
that are most frequently used and thereby allows the processor to avoid
calling on external memory chips much of the time. Some newer chips
actually dedicate as many transistors to the cache as they do to the
processor itself. Future microprocessors will allot even more resources to
the cache to better bridge the speed gap.

The Holy Grail of computer design is an approach called parallel
processing, which delivers all the benefits of a single fast processor by
engaging many inexpensive ones at the same time. In our analogy, we
would go to a laundromat and use 20 washers and 20 dryers to do 20 loads
simultaneously. Clearly, parallel processing is an expensive solution for a
small workload. And writing a program that can use 20 processors at once
1s much harder than distributing laundry to 20 washers.

Indeed, the program must specify which instructions can be launched
by which processor at what time. Superscalar processing bears similarities
to parallel processing, and it is more popular because the hardware
automatically finds instructions that launch at the same time. But its
potential processing power is not as large. If it were not so difficult to write
the necessary programs, parallel processors could be made as powerful as
one could afford. For the past 25 years, computer scientists have predicted

103

that the programming problems will be overcome. In fact, parallel
processing 1s practical for only a few classes of programs today.
In reviewing old articles, I have seen fantastic predictions of what
computers would be like in 1995. Many stated that optics would replace
electronics; computers would be built entirely from biological materials;
the stored program concept would be discarded. These descriptions
demonstrate that it is impossible to foresee what inventions will prove
commercially viable and go on to revolutionize the computer industry.
In my career, only three new technologies have prevailed:
microprocessors, random-access memory and optical fibers. And their
impact has yet to wane, decades after their debut.

IRAMSs and Picoprocessors

Pipelining, superscalar organization and caches will continue to play
major roles in the advancement of microprocessor technology, and if hopes
are realized, parallel processing will join them. What will be startling is
that microprocessors will probably exist in everything from light switches
to pieces of paper. And the range of applications these extraordinary
devices will support, from voice recognition to virtual reality, will very
likely be astounding.

Today microprocessors and memories are made on distinct
manufacturing lines, but it need not be so. Perhaps in the near future,
processors and memory will be merged onto a single chip, just as the
microprocessor first merged the separate components of a processor onto a
single chip. To narrow the processor-memory performance gap, to take
advantage of parallel processing, to amortize the costs of the line and
simply to make full use of the phenomenal number of transistors that can
be placed on a single chip, I predict that the high-end microprocessor of
2020 will be an entire computer.

Let’s call it an IRAM, standing for intelligent random-access memory,
since most of the transistors on this merged chip will be devoted to
memory. Whereas current microprocessors rely on hundreds of wires to
connect to external memory chips, IRAMs will need no more than
computer network connections and a power plug. All input-output devices
will be linked to them via networks. If they need more memory, they will
get more processing power as well, and vice versa — an arrangement that
will keep the memory capacity and processor speed in balance. IRAMs are
also the ideal building block for parallel processing. And because they
would require so few external connections, these chips could be
extraordinarily small. We may well see cheap “picoprocessors” that are

104

smaller than the ancient Intel 4004. If parallel processing succeeds, this sea
of transistors could also be used by multiple processors on a single chip,
giving us a micromultiprocessor.

Today’s microprocessors are almost 100,000 times faster than their
Neanderthal ancestors of the 1950s, and when inflation is considered, they
cost 1,000 times less. These extraordinary facts explain why computing
plays such a large role in our world now. Looking ahead, microprocessor
performance will easily keep doubling every 18 months through the turn of
the century. After that, it is hard to bet against a curve that has outstripped
all expectations. But it 1s plausible that we will see improvements in the
next 25 years at least as large as those seen in the past 50. This estimate
means that one desktop computer in the near future will be as powerful as
all the computers in Silicon Valley today.

(9,927 symbols)
http://www.scientificamerican.com/

TEXT 25 WEB DEVELOPMENT

Web development refers to building, creating, and maintaining
websites. It includes aspects such as web design, web publishing, web
programming, and database management.

While the terms "web developer" and "web designer" are often used
synonymously, they do not mean the same thing. Technically, a web
designer only designs website interfaces using HTML and CSS. A web
developer may be involved in designing a website, but may also write
web scripts in languages such as PHP and ASP. Additionally, a web
developer may help maintain and update a database used by a dynamic
website.

Web development includes many types of web content creation. Some
examples include hand coding web pages in atext editor, building a
website in a program like Dreamweaver, and updating ablogvia a
blogging website. In recent years, content management systems like
WordPress, Drupal, and Joomla have also become popular means of web
development. These tools make it easy for anyone to create and edit their
own website using a web-based interface.

While there are several methods of creating websites, there is often a
trade-off between simplicity and customization. Therefore, most large
businesses do not use content management systems, but instead have a
dedicated Web development team that designs and maintains the
company's website(s). Small organizations and individuals are more likely

105

http://www.scientificamerican.com/
http://techterms.com/definition/web_design
http://techterms.com/definition/web_publishing
http://techterms.com/definition/database
http://techterms.com/definition/html
http://techterms.com/definition/css
http://techterms.com/definition/script
http://techterms.com/definition/php
http://techterms.com/definition/asp
http://techterms.com/definition/dynamicwebsite
http://techterms.com/definition/dynamicwebsite
http://techterms.com/definition/texteditor
http://techterms.com/definition/blog
http://techterms.com/definition/interface

to choose a solution like WordPress that provides a basic website
template and simplified editing tools.

NOTE: JavaScript programming is a type of web development that is
generally not considered part of web design. However, a web designer may
reference JavaScript libraries like jQuery to incorporate dynamic elements
into a site's design.

Web design is the process of creating websites. It encompasses several
different aspects, including webpage layout, content production, and
graphic design. While the terms web design and web development are
often used interchangeably, web design is technically a subset of the
broader category of web development.

Websites are created using amarkup language called HTML.
Web designers build webpages using HTML tags that define the content
and metadata of each page. The layout and appearance of the elements
within a webpage are typically defined using CSS, or cascading style
sheets. Therefore, most websites include a combination of HTML and CSS
that defines how each page will appear in a browser.

Some web designers prefer to hand code pages (typing HTML and
CSS from scratch), while others use a "WYSIWYG" editor like Adobe
Dreamweaver. This type of editor provides a visual interface for designing
the webpage layout and the software automatically generates the
corresponding HTML and CSS code. Another popular way to design
websites is with a content management system like WordPress or Joomla.
These services provide different website templates that can be used as a
starting point for a new website. Webmasters can then add content and
customize the layout using a web-based interface.

While HTML and CSS are used to design the look and feel of a
website, images must be created separately. Therefore, graphic design may
overlap with web design, since graphic designers often create images for
use on the Web. Some graphics programs like Adobe Photoshop even
include a "Save for Web..." option that provides an easy way to export
images in a format optimized for web publishing.

Web publishing, or "online publishing," is the process of publishing
content on the Internet. It includes creating and uploading websites,
updating webpages, and posting blogs online. The published content may
include text, images, videos, and other types of media.

In order to publish content on the web, you need three things:
1) web development software, 2) an Internet connection, and 3) a web
server. The software may be a professional web design program like

106

http://techterms.com/definition/template
http://techterms.com/definition/javascript
http://techterms.com/definition/website
http://techterms.com/definition/webpage
http://techterms.com/definition/web_development
http://techterms.com/definition/markup_language
http://techterms.com/definition/html
http://techterms.com/definition/tag
http://techterms.com/definition/metadata
http://techterms.com/definition/css
http://techterms.com/definition/web_browser
http://techterms.com/definition/wysiwyg
http://techterms.com/definition/software
http://techterms.com/definition/template
http://techterms.com/definition/webmaster
http://techterms.com/definition/web_publishing
http://techterms.com/definition/website
http://techterms.com/definition/webpage
http://techterms.com/definition/blog
http://techterms.com/definition/software
http://techterms.com/definition/web_server
http://techterms.com/definition/web_server

Dreamweaver or a simple web-based interface like WordPress.
The Internet connection serves as the medium for uploading the content to
the web server. Large sites may use a dedicated web host, but many smaller
sites often reside on shared servers, which host multiple websites. Most
blogs are published on public web servers through a free service like
Blogger.

Since web publishing doesn't require physical materials such as paper
and ink, it costs almost nothing to publish content on the web. Therefore,
anyone with the three requirements above can be a web publisher.
Additionally, the audience is limitless since content posted on the web can
be viewed by anyone in the world with an Internet connection. These
advantages of web publishing have led to a new era of personal publishing
that was not possible before.

NOTE: Posting updates on social networking websites
like Facebook and Twitter is generally not considered web publishing.
Instead, web publishing generally refers to uploading content to unique
websites.

What is the difference between a web designer and a web developer?
In the early days of the web, the answer to that question was simple:
designers design and developers code.

Today that question requires a little more nuance — you’d be hard
pressed to find a web designer who didn’t know at least a little HTML and
CSS, and you won’t have to look far for a front-end web developer who
can whip up a storyboard.

If you’re strictly speaking about the general concepts of web design
vs. web development however, the distinction is a little more clear.
Let’s take a look at these two concepts and the roles they play in building
the websites and apps we know and love.

What is web design?

Web design governs everything involved with the visual
aesthetics and usability of a website — color scheme, layout, information
flow, and everything else related to the visual aspects of the U/UX (user
interface and user experience). Some common skills and tools that
distinguish the web designer from the web developer are:

« Adobe Creative Suite (Photoshop, Illustrator) or other design
software

« Graphic design

« Logo design

« Layout/format

107

http://techterms.com/definition/upload
http://techterms.com/definition/webhost
http://techterms.com/definition/socialnetworking
http://techterms.com/definition/facebook
http://techterms.com/definition/twitter
https://www.upwork.com/hiring/design/what-type-of-designer-do-you-need/
https://www.upwork.com/hiring/design/ux-ui-ia-digital-design-terms-explained/
https://www.upwork.com/hiring/design/ux-ui-ia-digital-design-terms-explained/

« Placing call-to-action buttons

« Branding

« Wireframes, mock-ups, and storyboards

« Color palettes

- Typography

Web design is concerned with what the user actually sees on their
computer screen or mobile device, and less so about the mechanisms
beneath the surface that make it all work. Through the use of color, images,
typography and layout, they bring a digital experience to life.

That said, many web designers are also familiar with HTML, CSS,
and JavaScript — it helps to be able to create living mock-ups of a web app
when trying to pitch an idea to the team or fine-tune the UI/UX of an app.
Web designers also often work with templating services like WordPress or
Joomla!, which allow you to create websites using themes and widgets
without writing a single line of code.

What is web development?

Web development governs all the code that makes a website tick.
It can be split into two categories — front-end and back-end. The front-end
or client-side of an application is the code responsible for determining how
the website will actually display the designs mocked up by a designer.
The back-end or server-side of an application is responsible for managing
data within the database and serving that data to the front-end to be
displayed. As you may have guessed, it’s the front-end developer’s job that
tends to share the most overlap with the web designer. Some common
skills and tools traditionally viewed as unique to the front-end developer
are listed below:

« HTML/CSS/JavaScript

« CSS preprocessors (i.e., LESS or Sass)

« Frameworks (i.e., Angular]S, React]JS, Ember)

o Libraries (1.e., jQuery)

« Git and GitHub

Front-end web developers don’t usually create mock-ups, select
typography, or pick color palettes —these are usually provided by the
designer. It’s the developer’s job to bring those mock-ups to life. That said,
understanding what the designer wants requires some knowledge of best
practices in UI/UX design, so that the developer is able to choose the right
technology to deliver the desired look and feel and experience in the final
product.

108

https://www.upwork.com/hiring/development/css-cascading-style-sheets/
https://www.upwork.com/hiring/development/6-things-to-love-about-the-ember-js-framework/
https://www.upwork.com/hiring/development/jquery-javascript-library/
https://www.upwork.com/hiring/development/what-is-github-and-why-should-your-digital-team-use-it/

Meet the “unicorn”

What started out as a joke in the industry — the designer/developer
hybrid who can do it all — is now a viable endgame for both web designers
and front-end developers, thanks to the increase in availability of
educational resources across the web. Those developers/designers who
have a good grasp of skills across both sides of the spectrum are highly
sought after in the industry. The “unicorn” can take your project from the
conceptual stage of visual mock-ups and storyboards, and carry it through
front-end development all by themselves. Not that you’d want them to;
the real value of developers who design and designers who develop is their
ability to speak each other’s languages. This leads not only to better
communication on the team and a smoother workflow, it means you’ll land
on the best solution possible. As a general rule, feel free to rely on the
“unicorn” for small projects, where it’s feasible for one or two people to
handle both the back and front-ends of an application. For larger projects,
even if you do manage to hire a few “unicorns,” more clearly defined roles
are required.

(7,462 symbols)
http://techterms.com/definition/web development

TEXT 26 DBMS

A database management system (DBMS) is system software for
creating and managing databases. The DBMS provides users
and programmers with a systematic way to create, retrieve, update and
manage data.

A DBMS makes it possible for end users to create, read, update and
delete data in a database. The DBMS essentially serves as an interface
between the database and end users or application programs, ensuring that
data is consistently organized and remains easily accessible.

The DBMS manages three important things: the data, the
database engine that allows data to be accessed, locked and modified — and
the database schema, which defines the database’s logical structure. These
three foundational elements help provide concurrency, security, data
integrity and uniform administration procedures. Typical database
administration tasks supported by the DBMS include change management,
performance monitoring/tuning and backup and recovery. Many database
management systems are also responsible for automated rollbacks, restarts
and recovery as well as the logging and auditing of activity.

109

http://techterms.com/definition/web_development
http://searchsqlserver.techtarget.com/definition/database
http://searchdatamanagement.techtarget.com/definition/data
http://searchdatamanagement.techtarget.com/definition/data
http://searchsqlserver.techtarget.com/definition/database
http://searchsoftwarequality.techtarget.com/definition/application-program
http://whatis.techtarget.com/definition/engine
http://searchsqlserver.techtarget.com/definition/schema
http://searchoracle.techtarget.com/definition/concurrent-processing
http://searchdatacenter.techtarget.com/definition/integrity
http://searchdatacenter.techtarget.com/definition/integrity
http://searchcio.techtarget.com/definition/change-management
http://searchstorage.techtarget.com/definition/backup
http://searchstorage.techtarget.com/definition/recovery
http://searchsqlserver.techtarget.com/definition/rollback
http://whatis.techtarget.com/definition/log-log-file
http://searchcio.techtarget.com/definition/audit-trail

The DBMS is perhaps most useful for providing a centralized view of
data that can be accessed by multiple users, from multiple locations, in a
controlled manner. A DBMS can limit what data the end user sees, as well
as how that end user can view the data, providing many views of a single
database schema. End users and software programs are free from having to
understand where the data is physically located or on what type of storage
media it resides because the DBMS handles all requests.

The DBMS can offer both logical and physical data independence.
That means it can protect users and applications from needing to know
where data is stored or having to be concerned about changes to the
physical structure of data (storage and hardware). As long as programs use
the application programming interface (API) for the database that is
provided by the DBMS, developers won't have to modify programs just
because changes have been made to the database.

With relational DBMSs (RDBMSs), this API is SQL, a standard
programming language for defining, protecting and accessing data in a
RDBMS.

Popular types of DBMSes

Popular database models and their management systems include:

Relational database management system (RDMS) — adaptable to most
use cases, but RDBMS Tier-1 products can be quite expensive.

NoSQL DBMS - well-suited for loosely defined data structures that
may evolve over time.

In-memory database management system (IMDBMS) — provides
faster response times and better performance.

Columnar database management system (CDBMS) — well-suited
for data warehouses that have a large number of similar data items.

Cloud-based data management system - the cloud service provider is
responsible for providing and maintaining the DBMS.

Advantages of a DBMS

Using a DBMS to store and manage data comes with advantages, but
also overhead. One of the biggest advantages of using a DBMS is that it
lets end users and application programmers access and use the same data
while managing data integrity. Data is better protected and maintained
when it can be shared using a DBMS instead of creating new iterations of
the same data stored in new files for every new application. The DBMS
provides a central store of data that can be accessed by multiple users in a
controlled manner.

110

http://searchstorage.techtarget.com/definition/storage
http://searchexchange.techtarget.com/definition/application-program-interface
http://searchsqlserver.techtarget.com/definition/relational-database-management-system
http://searchsqlserver.techtarget.com/definition/SQL
http://searchitchannel.techtarget.com/definition/tier-1-vendor
http://searchdatamanagement.techtarget.com/definition/NoSQL-DBMS-Not-only-SQL-database-management-system
http://searchsqlserver.techtarget.com/definition/data-warehouse
http://searchcloudprovider.techtarget.com/definition/cloud-services

DBMS provides:

eData abstraction and independence

eData security

¢ A locking mechanism for concurrent access

eAn efficient handler to balance the needs of multiple applications
using the same data

eThe ability to swiftly recover from crashes and errors, including
restartability and recoverability

eRobust data integrity capabilities

e[ogging and auditing of activity

eSimple access using a standard application programming interface
(API)

eUniform administration procedures for data

Another advantage of a DBMS is that it can be used to impose a
logical, structured organization on the data. A DBMS delivers economy of
scale for processing large amounts of data because it is optimized for such
operations.

A DBMS can also provide many views of a single database schema.
A view defines what data the user sees and how that user sees the data.
The DBMS provides a level of abstraction between the conceptual schema
that defines the logical structure of the database and the physical schema
that describes the files, indexes and other physical mechanisms used by the
database. When a DBMS is used, systems can be modified much more
easily when business requirements change. New categories of data can be
added to the database without disrupting the existing system and
applications can be insulated from how data is structured and stored.

Of course, a DBMS must perform additional work to provide these
advantages, thereby bringing with it the overhead. A DBMS will use more
memory and CPU than a simple file storage system. And, of course,
different types of DBMSes will require different types and levels of system
resources.

A NoSQL DBMS (Not only SQL database management system) is
system software designed to create and manage NoSQL databases.
The DBMS provides users and programmers with a systematic way to
create, retrieve, update and manage data.

The world in whichrelational database @~ management
systems (RDBMSes) are the norm i1s fast disappearing. Although relational
database systems remain important, multiple new types of database
systems — of which the fastest growing is NoSQL — are being designed

111

http://whatis.techtarget.com/definition/CPU-central-processing-unit
http://searchsoa.techtarget.com/definition/software
http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL
http://searchsqlserver.techtarget.com/definition/relational-database-management-system
http://searchsqlserver.techtarget.com/definition/relational-database-management-system
http://searchsqlserver.techtarget.com/definition/relational-database-management-system
http://searchsqlserver.techtarget.com/definition/relational-database-management-system

and implemented to meet new types of business needs. Understanding the

types of NoSQL DBMSes that are available, as well as how and when they

can be beneficial, is an important requirement for modern application
development, especially mobile application development.

(4,726 symbols)

http://searchsqlserver.techtarget.com/definition/database-

management-system

TEXT 27 1C:ENTERPRISE

1C:Enterprise 1s a universal cloud and on-premise system of programs
for automating a company’s financial and wider operational activities.
1C:Enterprise has the breadth of capability to address the diverse needs of
today’s business. This is achieved through "configurability" — the ability to
customize the system based on the specific needs of companies and their
business processes.

1C:Enterprise is more than just a solution automating fixed business
rules. Rather it is a suite of software tools employed by developers and
users. The system can be logically divided into two major components that
are closely interrelated: an application and the platform on which the
application runs.

1C:Enterprise Platform offers the following advantages:

« Drastically reduces technological complexity, ergonomics, and
performance issues of enterprise software systems.

« Allows power users to implement specific business processes.

«Speeds up and standardizes business application development,
customization, and support.

« Provides complete openness of Ul and solution code, which allows
better understanding and modification of business processes.

o Is ready for integration with existing 1C applications and third-party
systems.

« Supports web-services, ODBC, COM, and so on.

« Supports your preferred architecture: Windows/Linux, MS SQL,
PostgreSQL, IBM DB2, and Oracle DB.

« Includes on-premise or managed hosting web-based delivery, as well

as Web, tablet, or Windows client.

The 1C:Enterprise System of Programs
The 1C:Enterprise application system is daily used by several million
users in business and government to automate operations, accounting,

112

http://searchsoa.techtarget.com/definition/Mobile-application-development
http://searchsqlserver.techtarget.com/definition/database-management-system
http://searchsqlserver.techtarget.com/definition/database-management-system

finance, HR, and management activities. 1C Company provides an array of
vertical solutions for manufacturing, distribution, and service businesses.
With its innovative technological platform and the array of applied
solutions, 1C Company has achieved wide popularity for its openness,
speed of modification and software updates. 1C:Enterprise is a very
flexible and scalable platform meeting the needs of companies ranging in
size from a single user to hundreds of users.

Configurability

A major feature of the 1C:Enterprise system is its configurability.

The 1C:Enterprise system itself i1s a set of mechanisms designed to
manipulate various types of objects in a subject area. A set of objects, data
array structures and information processing algorithms for the assigned
task are defined by a specific configuration. Joined with the configuration,
the 1C:Enterprise system functions as a ready-to-use software product
customized for particular enterprise types and task classes.

The configuration is created and supported by standard system tools.
A configuration is usually supplied as standard for a particular area of
application, but it may be modified or extended by the user or developed
from scratch. The 1C:Enterprise system supports standard configurations
using standard tools.

Functioning of the system

Functioning of the system involves two processes: development
(description of a subject-area model by system tools) and execution
(processing of subject-area data).

The development stage includes:

Structuring the processed information

Creating forms for source data entry and data list display
Storing the entered and derived information

Generating reports and data processors

Creating command interfaces for various user groups
Creating a user list

Assigning rights to users

Development results in software (configuration) representing a model.

The designing mode permits the user to create new configurations,
edit the existing ones and compare or merge several configurations.

At the development stage, the system uses universal concepts or
objects such as Document, Document Journal, Catalog, Attribute, Form,
Register and others. A set of these concepts defines the concept of the
system. In its turn, the configuration process is broken down into several

113

components (this is an arbitrary division) that define the order in which
volumes of description are written and assigned. These are "visual"
configuration (creation of the configuration structure, forms for dialog
boxes and output documents, user-data interaction mechanism or interface
and access rights of various user groups to various types of information)
and generation of programs in the 1C:Enterprise script for processing input
and output data.

The actual concepts of objects and standard operations for processing
them are defined at the system level. Configuration tools can be used to
describe the structure of information included in the objects and algorithms
that describe the specifics of their processing to account for their various
accounting features.

The information structure is designed at the level of the processable
subject-area objects specified in the system (constants, catalogs,
documents, registers, enumerations, etc.).

As it runs, the system works with specific concepts described at the
configuration stage (product and organization catalogs, bills, invoices,
etc.).

When the user works in the 1C:Enterprise mode, information is
processed both with standard system tools and using algorithms created at
the configuration stage.

Basic concepts of the system

This section discusses the basic concepts used by the 1C:Enterprise
system. It is useful to those who are not yet familiar with the 1C:Enterprise
system.

The description of various mechanisms is illustrated with examples.
You can encounter unfamiliar terms and concepts in the description. Keep
reading — the meaning of the terms used will become clear as you do so; if
you want more detailed information, you can always refer to the
corresponding chapters of this guide.

Configuration Concept

The basic concept is that of configuration.

In the 1C:Enterprise system, a configuration means a set of
interrelated components:

subsystems

accounting data structures and data input, selection and print forms

a set of mechanisms for totals accounting and register records of
accounting data

a set of various reports and data processors

114

command interface

a set of roles or access rights

a set of common procedures and functions (application module,
managed application module, external connection module, session module,
and common modules), spreadsheet templates, etc.

auxiliary objects: functional options and their parameters

settings storages

Web tools (Web-services, WS references)

various auxiliary information (pictures, templates, styles, etc.)

In fact, a configuration structure is a subject area model.
A configuration is created using the Designer. The resulting configuration
is used by the 1C:Enterprise system to create a software environment
suitable for the accomplishment of the necessary accounting tasks.

Roles in the 1C:Enterprise system define whether users can work with
information processed in the system. A set of privileges granted to the user
is generally defined by the scope of the user's duties.

Assignment of roles to the user accomplishes two things:

On the one hand, it limits the number of users having access to
sensitive information that is always a part of any accounting system.

On the other hand, prohibition of certain operations (primarily data
deletion and editing) helps prevent a possible loss of information.

All components of a configuration are closely interrelated and
generally require consistency in making changes (this applies especially to
user rights).

Thus, roles can be assigned only for existing configuration objects
(specific documents, journals, catalogs or reports). Insertion of an object
into the configuration structure must be accompanied by appropriate role
changes.

(6,317 symbols)
http://1c-dn.com/

TEXT 28 ORACLE DATABASE ARCHITECTURE

An Oracle database is a collection of data treated as a unit.
The purpose of a database is to store and retrieve related information.
A database server is the key to solving the problems of information
management. In general, a server reliably manages a large amount of data
in a multiuser environment so that many users can concurrently access the
same data. All this is accomplished while delivering high performance.

115

http://1c-dn.com/
http://docs.oracle.com/cd/B19306_01/server.102/b14220/glossary.htm#i432724

A database server also prevents unauthorized access and provides efficient
solutions for failure recovery.

Oracle Database is the first database designed for enterprise grid
computing, the most flexible and cost effective way to manage information
and applications. Enterprise grid computing creates large pools of industry-
standard, modular storage and servers. With this architecture, each new
system can be rapidly provisioned from the pool of components. There is
no need for peak workloads, because capacity can be easily added or
reallocated from the resource pools as needed.

The database has logical structures and physical structures. Because
the physical and logical structures are separate, the physical storage of data
can be managed without affecting the access to logical storage structures.

Overview of Oracle Grid Architecture.

Grid computing 1s a new IT architecture that produces more resilient
and lower cost enterprise information systems. With grid computing,
groups of independent, modular hardware and software components can be
connected and rejoined on demand to meet the changing needs of
businesses.

The grid style of computing aims to solve some common problems
with enterprise IT: the problem of application silos that lead to under
utilized, dedicated hardware resources, the problem of monolithic,
unwieldy systems that are expensive to maintain and difficult to change,
and the problem of fragmented and disintegrated information that cannot
be fully exploited by the enterprise as a whole.

Benefits of Grid Computing

Compared to other models of computing, IT systems designed and
implemented in the grid style deliver higher quality of service, lower cost,
and greater flexibility. Higher quality of service results from having no
single point of failure, a robust security infrastructure, and centralized,
policy-driven management. Lower costs derive from increasing the
utilization of resources and dramatically reducing management and
maintenance costs. Rather than dedicating a stack of software and
hardware to a specific task, all resources are pooled and allocated on
demand, thus eliminating under utilized capacity and redundant
capabilities. Grid computing also enables the use of smaller individual
hardware components, thus reducing the cost of each individual component
and providing more flexibility to devote resources in accordance with
changing needs.

116

Grid Computing Defined

The grid style of computing treats collections of similar IT resources
holistically as a single pool, while exploiting the distinct nature of
individual resources within the pool. To address simultaneously the
problems of monolithic systems and fragmented resources, grid computing
achieves a balance between the benefits of holistic resource management
and flexible independent resource control. IT resources managed in a grid
include:

o Infrastructure: the hardware and software that create a data storage
and program execution environment

« Applications: the program logic and flow that define specific
business processes

« Information: the meanings inherent in all different types of data used
to conduct business

Core Tenets of Grid Computing.

Two core tenets uniquely distinguish grid computing from other styles
of computing, such as mainframe, client-server, or multi-tier: virtualization
and provisioning.

« With virtualization, individual resources (e.g. computers, disks,
application components and information sources) are pooled together by
type then made available to consumers (e.g. people or software programs)
through an abstraction. Virtualization means breaking hard-coded
connections between providers and consumers of resources, and preparing
a resource to serve a particular need without the consumer caring how that
1s accomplished.

« With provisioning, when consumers request resources through a
virtualization layer, behind the scenes a specific resource is identified to
fulfill the request and then it is allocated to the consumer. Provisioning as
part of grid computing means that the system determines how to meet the
specific need of the consumer, while optimizing operation of the system as
a whole.

The specific ways in which information, application or infrastructure
resources are virtualized and provisioned are specific to the type of
resource, but the concepts apply universally. Similarly, the specific
benefits derived from grid computing are particular to each type of
resource, but all share the characteristics of better quality, lower costs and
increased flexibility.

117

Infrastructure Grid

Infrastructure grid resources include hardware resources such as
storage, processors, memory, and networks as well as software designed to
manage this hardware, such as databases, storage management, system
management, application servers, and operating systems.

Virtualization and provisioning of infrastructure resources mean
pooling resources together and allocating to the appropriate consumers
based on policies. For example, one policy might be to dedicate enough
processing power to a web server that it can always provide sub-second
response time. That rule could be fulfilled in different ways by the
provisioning software in order to balance the requests of all consumers.

Treating infrastructure resources as a single pool and allocating those
resources on demand saves money by eliminating under utilized capacity
and redundant capabilities. Managing hardware and software resources
holistically reduces the cost of labor and the opportunity for human error.

Spreading computing capacity among many different computers and
spreading storage capacity across multiple disks and disk groups removes
single points of failure so that if any individual component fails, the system
as a whole remains available. Furthermore, grid computing affords the
option to use smaller individual hardware components, such as blade
servers and low cost storage, which enables incremental scaling and
reduces the cost of each individual component, thereby giving companies
more flexibility and lower cost.

Infrastructure is the dimension of grid computing that is most familiar
and easy to understand, but the same concepts apply to applications and
information.

(5,574 symbols)
http://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm

TEXT 29 FLIGHT INSTRUMENTS

Flight instruments are the instruments in the cockpit of an aircraft
that provide the pilot with information about the flight situation of that
aircraft, such as altitude, airspeed and direction. They improve safety by
allowing the pilot to fly the aircraft in level flight, and make turns, without
a reference outside the aircraft such as the horizon. Visual flight
rules (VFR) require an airspeed indicator, an altimeter, and a compass or
other suitable magnetic direction indicator. Instrument flight rules (IFR)
additionally require a gyroscopic pitch-bank (artificial horizon), direction

118

http://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm
https://en.wikipedia.org/wiki/Altitude
https://en.wikipedia.org/wiki/Airspeed
https://en.wikipedia.org/wiki/Visual_flight_rules
https://en.wikipedia.org/wiki/Visual_flight_rules
https://en.wikipedia.org/wiki/Instrument_flight_rules

(directional gyro) and rate of turn indicator, plus a slip-skid indicator,
adjustable altimeter, and a clock. Flight into Instrument meteorological
conditions (IMC) require radio navigation instruments for precise takeoffs
and landings.

The term 1is sometimes used loosely as a synonym for cockpit
instruments as a whole, in which context it can include engine instruments,
navigational and communication equipment. Many modern aircraft have
electronic flight instrument systems.

Most regulated aircraft have these flight instruments as dictated by the
US Code of Federal Regulations, Title 14, Part 91. They are grouped
according to pitot-static system, compass systems, and gyroscopic
instruments.

Pitot-Static Systems

Altimeter

The altimeter shows the aircraft's altitude above sea-level by
measuring the difference between the pressure in a stack of aneroid
capsules inside the altimeter and the atmospheric pressure obtained
through the static system. It is adjustable for local barometric pressure
which must be set correctly to obtain accurate altitude readings. As the
aircraft ascends, the capsules expand and the static pressure drops, causing
the altimeter to indicate a higher altitude. The opposite effect occurs when
descending. With the advancement in aviation and increased altitude
ceiling the altimeter dial had to be altered for use both at higher and lower
altitudes. Hence when the needles were indicating lower altitudes i.e. the
first 360 degree operation of the pointers was delineated by the appearance
of a small window with oblique lines warning the pilot that he/she is nearer
to the ground. This modification was introduced in the early sixties after
the recurrence of air accidents caused by the confusion in the pilot's mind.
At higher altitudes the window will disappear.

Airspeed indicator

The airspeed indicator shows the aircraft's speed (usually in knots)
relative to the surrounding air. It works by measuring the ram-air pressure
in the aircraft's Pitot tube relative to the ambient static pressure.
The Indicated airspeed (IAS) must be corrected for nonstandard pressure
and temperature in order to obtain the True airspeed (TAS). The instrument
is color coded to indicate important airspeeds such as the stall speed,
never-exceed airspeed, or safe flap operation speeds.

119

https://en.wikipedia.org/wiki/Instrument_meteorological_conditions
https://en.wikipedia.org/wiki/Instrument_meteorological_conditions
https://en.wikipedia.org/wiki/Radio_navigation
https://en.wikipedia.org/wiki/Cockpit
https://en.wikipedia.org/wiki/Cockpit
https://en.wikipedia.org/wiki/Electronic_flight_instrument_system
https://en.wikipedia.org/wiki/Code_of_Federal_Regulations
https://en.wikipedia.org/wiki/Pitot-static_system
https://en.wikipedia.org/wiki/Compass
https://en.wikipedia.org/wiki/Gyroscopic
https://en.wikipedia.org/wiki/Pressure_measurement#Aneroid
https://en.wikipedia.org/wiki/Static_pressure
https://en.wikipedia.org/wiki/Knot_(unit)
https://en.wikipedia.org/wiki/Pitot_tube
https://en.wikipedia.org/wiki/Indicated_airspeed
https://en.wikipedia.org/wiki/True_airspeed
https://en.wikipedia.org/wiki/Flap_(aeronautics)

Vertical speed indicator

The VSI (also sometimes called a variometer, or rate of climb
indicator) senses changing air pressure, and displays that information to the
pilot as a rate of climb or descent in feet per minute, meters per second or
knots.

Compass Systems

Magnetic compass

The compass shows the aircraft's heading relative to magnetic north.
Errors include Variation, or the difference between magnetic and true
direction, and Deviation, caused by the electrical wiring in the aircraft,
which requires a Compass Correction Card. Additionally, the compass is
subject to Dip Errors. While reliable in steady level flight it can give
confusing indications when turning, climbing, descending, or accelerating
due to the inclination of the Earth's magnetic field. For this reason,
the heading indicator is also used for aircraft operation, but periodically
calibrated against the compass.

Gyroscopic Systems

Attitude Indicator

The attitude indicator (also known as an artificial horizon) shows the
aircraft's relation to the horizon. From this the pilot can tell whether the
wings are level (roll) and if the aircraft nose is pointing above or below the
horizon (pitch). This is a primary instrument for instrument flight and is
also useful in conditions of poor visibility. Pilots are trained to use other
instruments in combination should this instrument or its power fail.

Schempp-Hirth Janus-C glider Instrument panel equipped for "cloud
flying". The turn and bank indicator is top centre. The heading indicator is
replaced by a GPS-driven computer with wind and glide data, driving two
electronic variometer displays to the right.

Heading Indicator

The heading indicator (also known as the directional gyro, or DQG)
displays the aircraft's heading with respect to magnetic north when set with
a compass. Bearing friction causes drift errors from precession, which must
be periodically corrected by calibrating the instrument to the magnetic
compass. In many advanced aircraft (including almost all jet aircraft), the
heading indicator i1s replaced by a horizontal situation indicator (HSI)
which provides the same heading information, but also assists with
navigation.

120

https://en.wikipedia.org/wiki/Variometer
https://en.wikipedia.org/wiki/Compass_variation
https://en.wikipedia.org/wiki/Aircraft_compass_turns
https://en.wikipedia.org/wiki/Heading_indicator
https://en.wikipedia.org/wiki/Flight_dynamics
https://en.wikipedia.org/wiki/Flight_dynamics
https://en.wikipedia.org/wiki/Schempp-Hirth_Janus
https://en.wikipedia.org/wiki/Glider_(sailplane)
https://en.wikipedia.org/wiki/Turn_and_bank_indicator
https://en.wikipedia.org/wiki/Heading_indicator
https://en.wikipedia.org/wiki/GPS
https://en.wikipedia.org/wiki/Precession
https://en.wikipedia.org/wiki/Horizontal_situation_indicator

Turn Indicator

These include the Turn-and-Slip Indicator and the Turn Coordinator,
which indicate rotation about the longitudinal axis. They include
an inclinometer to indicate if the aircraft is in Coordinated flight, or in
a Slip or Skid. Additional marks indicate a Standard rate turn.

Flight Director Systems

These include the Horizontal Situation Indicator (HSI) and Attitude
Director Indicator (ADI). The HSI combines the magnetic compass with
navigation signals and a Glide slope. The navigation information comes
from a VOR/Localizer, or GPS. The ADI is an Attitude Indicator with
computer-driven steering bars, a task reliever during instrument flight.

Navigational Systems

Very-High Frequency Omnidirectional Range (VOR)

The VOR indicator instrument includes a Course deviation
indicator (CDI), Omnibearing Selector (OBS), TO/FROM indicator, and
Flags. The CDI shows an aircraft's lateral position in relation to a selected
radial track. It is used for orientation, tracking to or from a station, and
course interception.

Nondirectional Radio Beacon (NDB)

The Automatic direction finder (ADF) indicator instrument can be a
fixed-card, movable card, or a Radio magnetic indicator (RMI). An RMI is
remotely coupled to a gyrocompass so that it automatically rotates the
azimuth card to represent aircraft heading. While simple ADF displays
may have only one needle, a typical RMI has two, coupled to different
ADF receivers, allowing for position fixing using one instrument.

Layout

Six basic instruments in a light twin-engine airplane arranged in a
"basic-T". From top left: airspeed indicator, attitude indicator,
altimeter, turn coordinator, heading indicator, and vertical speed indicator.

Most aircraft are equipped with a standard set of flight
instruments which give the pilot information about the aircraft's attitude,
airspeed, and altitude.

T arrangement

Most US aircraft built since the 1940s have flight instruments
arranged in a standardized pattern called the "T" arrangement. The attitude
indicator is in the top center, airspeed to the left, altimeter to the right and
heading indicator under the attitude indicator. The other two, turn-
coordinator and vertical-speed, are usually found under the airspeed and
altimeter, but are given more latitude in placement. The magnetic compass

121

https://en.wikipedia.org/wiki/Aircraft_principal_axes
https://en.wikipedia.org/wiki/Inclinometer
https://en.wikipedia.org/wiki/Coordinated_flight
https://en.wikipedia.org/wiki/Slip_(aerodynamics)
https://en.wikipedia.org/wiki/Skid_(aerodynamics)
https://en.wikipedia.org/wiki/Standard_rate_turn
https://en.wikipedia.org/wiki/Glide_slope
https://en.wikipedia.org/wiki/VHF_omnidirectional_range
https://en.wikipedia.org/wiki/Localizer
https://en.wikipedia.org/wiki/GPS
https://en.wikipedia.org/wiki/Course_deviation_indicator
https://en.wikipedia.org/wiki/Course_deviation_indicator
https://en.wikipedia.org/wiki/Automatic_direction_finder
https://en.wikipedia.org/wiki/Radio_direction_finder#RMI
https://en.wikipedia.org/wiki/Position_fixing
https://en.wikipedia.org/wiki/Airplane
https://en.wikipedia.org/wiki/Airspeed_indicator
https://en.wikipedia.org/wiki/Attitude_indicator
https://en.wikipedia.org/wiki/Altimeter
https://en.wikipedia.org/wiki/Turn_coordinator
https://en.wikipedia.org/wiki/Heading_indicator
https://en.wikipedia.org/wiki/Vertical_speed_indicator

will be above the instrument panel, often on the windscreen centerpost. In
newer aircraft with glass cockpit instruments the layout of the displays
conform to the basic T arrangement.

Early history

In 1929, Jimmy Doolittle became the first pilot to take off, fly and
land an airplane using instruments alone, without a view outside the
cockpit. In 1937, the British Royal Air Force (RAF) chose a set of six
essential flight instruments which would remain the standard panel used
for flying in instrument meteorological conditions (IMC) for the next 20
years. They were:

. altimeter (feet)

« airspeed indicator (knots)

o turn and bank indicator (turn direction and coordination)

« vertical speed indicator (feet per minute)

. artificial horizon (attitude indication)

« directional gyro / heading indicator (degrees)

This panel arrangement was incorporated into all RAF aircraft built
to official specification from 1938, such as the Miles Master, Hawker
Hurricane, Supermarine Spitfire, and 4-engined Avro Lancaster and
Handley Page Halifax heavy bombers, but not the earlier light single-
engined Tiger Moth trainer, and minimized the type-conversion difficulties
associated with blind flying, since a pilot trained on one aircraft could
quickly become accustomed to any other if the instruments were identical.

This basic six set, also known as a "six pack", was also adopted by
commercial aviation. After the Second World War the arrangement was
changed to: (top row) airspeed, artificial horizon, altimeter, (bottom row)
turn and bank indicator, heading indicator, vertical speed.

Further development

Of the old basic six instruments, the turn and bank indicator is now
obsolete. The instrument was included, but it was of little use in the first
generation of jet airliners. It was removed from many aircraft prior to glass
cockpits becoming available. With an improved artificial horizon,
including gyros and flight directors, the turn and bank indicator became
needless except when performing certain types of aerobatics (which would
not be intentionally performed in IMC to begin with). But the other five
flight instruments, sometimes known as "the big five", are still included in
all cockpits. The way of displaying them has changed over time, though. In
glass cockpits the flight instruments are shown on monitors. But the
display is not shown by numbers, but as images of analog instruments.

122

https://en.wikipedia.org/wiki/Windscreen
https://en.wikipedia.org/wiki/Glass_cockpit
https://en.wikipedia.org/wiki/Royal_Air_Force
https://en.wikipedia.org/wiki/Instrument_meteorological_conditions
https://en.wikipedia.org/wiki/Altimeter
https://en.wikipedia.org/wiki/Airspeed_indicator
https://en.wikipedia.org/wiki/Turn_and_bank_indicator
https://en.wikipedia.org/wiki/Vertical_speed_indicator
https://en.wikipedia.org/wiki/Artificial_horizon
https://en.wikipedia.org/wiki/Directional_gyro
https://en.wikipedia.org/wiki/List_of_Air_Ministry_specifications
https://en.wikipedia.org/wiki/Miles_Master
https://en.wikipedia.org/wiki/Hawker_Hurricane
https://en.wikipedia.org/wiki/Hawker_Hurricane
https://en.wikipedia.org/wiki/Supermarine_Spitfire
https://en.wikipedia.org/wiki/Avro_Lancaster
https://en.wikipedia.org/wiki/Handley_Page_Halifax
https://en.wikipedia.org/wiki/De_Havilland_Tiger_Moth
https://en.wikipedia.org/wiki/World_War_II
https://en.wikipedia.org/wiki/Flight_director_(aviation)
https://en.wikipedia.org/wiki/Instrument_meteorological_conditions

The artificial horizon is given a central place in the monitor, with a heading
indicator just below (usually this is displayed only as a part of the
compass). The indicated airspeed, altimeter, and vertical speed indicator
are displayed as columns with the indicated airspeed and altitude to the
right of the horizon and the vertical speed to the left in the same pattern as
in most older style "clock cockpits".

Different significance and some other instrumentation

In good weather a pilot can fly by looking out the window. However,
when flying in cloud at least one gyroscopic instrument is necessary to
orientate the aircraft, being either an artificial horizon, turn and slip, or a
gyro compass.

The vertical speed indicator, or VSI, is more of "a good help" than
absolutely essential. On jet aircraft it displays the vertical speed in
thousands of feet per minute, usually in the range -6 to -+6.
The gyrocompass can be used for navigation, but it is indeed a flight
instrument as well. It is needed to control the adjustment of the heading, to
be the same as the heading of the landing runway. Indicated airspeed, or
IAS, 1s the second most important instrument and indicates the airspeed
very accurately in the range of 45 to 250 knots. At higher altitude a
MACH-meter is used instead, to prevent the aircraft from overspeed.
An instrument called true airspeed, or TAS, exists on some aircraft.
TAS shows airspeed in knots in the range from 200 knots and higher. (It is
like the Mach-meter: not really a flight instrument). The altimeter displays
the altitude in feet, but must be corrected to local air pressure at the landing
airport. The altimeter may be adjusted to show an altitude of zero feet on
the runway, but far more common is to adjust the altimeter to show the
actual altitude when the aircraft has landed. In the latter case pilots must
keep the runway elevation in mind. However a radio altimeter (displaying
the height above the ground if lower than around 2000-2500 feet) has been
standard for decades. This instrument is however not among the "big five",
but must still be considered as a flight instrument.

(9,736 symbols)
http://www.readbook5.com/aircraft-digital-electronic-and-computer-

systems/

123

https://en.wikipedia.org/wiki/True_airspeed
http://www.readbook5.com/aircraft-digital-electronic-and-computer-systems/
http://www.readbook5.com/aircraft-digital-electronic-and-computer-systems/

TEXT 30 MOBILE SEARCH ENGINE OPTIMIZATION

Millions of users these days access the web using smartphones
running on Android, 10S, or Windows. Hence, it has become imperative
that websites adapt themselves to this changing environment and make
suitable changes in their website design to attract more viewership.

The desktop version of a site might be difficult to view and use on a
mobile device. The version that is not mobile-friendly requires the user to
pinch or zoom in order to read the content. Users find this a frustrating
experience and are likely to abandon the site. In contrast, a mobile-friendly
version 1s readable and immediately usable. A recent Google update makes
it mandatory that a website should be mobile-friendly to be effective on
Mobile Search Engines. Note that a website that is not mobile-friendly will
not have any impact on regular search engines either.

What is Mobile SEO?

Mobile Search Engine Optimization is the process of designing a
website to make it suitable for viewing on mobile devices of different
screen sizes having low bandwidth. Apart from following all the SEO rules
which are applicable to a desktop website, we need to take additional care
while designing a website for mobile devices. A website is mobile friendly
if it has the following attributes:

oA good mobile website has a responsive design which performs well
on desktops as well as mobile devices. It not only reduces the maintenance
of the website but also makes the content consistent for the search engines.

eThe contents of a good mobile website are easy to read on a mobile
device without having to zoom the screen. It has appropriate fonts, colors,
and layouts.

elt is easy to navigate through a good mobile website on a small
screen. It provides links and buttons that can be easily maneuvered using a
finger.

oA good mobile website is lightweight such that it takes less
bandwidth and time to load on mobile networks.

eThe Home Page of a mobile website plays the most important role in
connecting users to the content they are looking for. Therefore, good
mobile websites make sure the most important links are displayed on the
Home Page so that they get enough visibility.

The ranking of a website depends heavily on how user friendly it is.
You can follow the guidelines given below to design a great mobile-
friendly website.

124

Optimize Your Site for Mobile

If your site 1s already optimized for search engines, then it should not
be too difficult to optimize it for mobile devices. First, let us understand
what it takes to go mobile. We can categorize the steps into three broad
categories —

Step 1 — Select a Mobile Configuration

Step 2 — Inform Search Engines

Step 3 — Avoid Common Mistakes

Select a Mobile Configuration

There are three different mobile configurations that you can choose
from —

Step 1 — Responsive Web Design

Step 2 — Dynamic Serving

Step 3 — Separate URLs

Each has its own advantages and disadvantages. Google recommends
responsive design, however it supports all three configurations.
The following table shows how the mobile configuration affects your URL
and HTML code —

Mobile Configuration | URL HTML

Responswe Web Stays the same Stays the same

Design

Dynamic Serving Stays the same Different HTMLs

Separate URLs Different HTMLs Different HTMLs
Responsive Web Design

Google recommends responsive web design become it is the simplest
mobile configuration and very easy to implement. It serves the same
HTML code on the same URL, however it adjusts the display based on the
screen size of the mobile device.

Dynamic Serving

Dynamic serving is a type of mobile configuration where the URL of
your website remains unchanged, but it serves different HTML content
when accessed from a mobile device.

When your content is dynamically served from the server, make sure
you inform Google that the content it is crawling may look different on
mobile devices. A major drawback of this approach is that you will have to
do additional processing on your content at the server level before severing

125

it to the user. This approach puts unnecessary load on your server and
makes it slow.

Separate URLs

When you maintain two different URLs — one for mobile users and
another for desktop users — make sure you inform Google explicitly when
to serve which version. Google does not recommend separate URLs
because it can detect automatically that your mobile pages are different
from your desktop pages.

This approach is not practical when you have a big website because
maintaining two versions of the same website will require double the effort
and money. At the same time, you cannot avoid various discrepancies in
your content while maintaining two versions.

From the viewpoint of SEO, each URL performs separately. Hence
your desktop ranking will never be added to the mobile ranking and they
will always be assumed as separate websites. We don’t recommend
maintaining different URLs for mobile and desktop versions if you want to
draw the benefits of SEO.

Inform Search Engines

Make sure Google and other search engines understand your mobile
configuration. Most important of all, Google must understand your page so
that it can rank your website properly. How you inform Google depends on
which mobile configuration — responsive web design, dynamic serving, or
separate URLs — you have opted for.

In case your site has a responsive design, Google’s algorithms can
understand it automatically without you having to inform Google. When
you have a responsive design, just make sure you have the following meta-

tag in your webpage header —
<meta name="viewport" content="width=device-width, initial-scale=1.0">

The viewport decides how your webpage will be displayed on a
device. A site with responsive design varies its size based on the size of the
device screen. Declare a viewport so that your webpage displays correctly
on any device.

If your website is dynamically served, make sure you allow Google
detect your configuration using the Vary HTTP header —

Vary: User-Agent

The Vary header is important to tell the search engines that different
content will be served on desktops and mobile devices. This header is
really important when your content is served by any cache system like a
Content Delivery Network and those systems will make use of this header
while serving content on different devices.

126

In case you maintain separate URLs, e.g., example.com and
m.example.com, then you can inform Google by adding a special link
rel=alternate tag in your desktop version and vice versa as follows.

Desktop page should have following in its header:

<link rel="alternate" media="only screen and (max-width: 640px)"
href="http://m.example.com" >

Mobile page should have following in its header:

<link rel="canonical" href="http://www.example.com" >

Avoid Common Mistakes

In order to optimize your website for mobile devices, make sure you
avoid committing the following mistakes —

eSlow Mobile Pages — Mobile networks are slower as compared to
wired Internet networks, so it is important to pay attention to how fast your
mobile pages load. It is a critical Google ranking factor. Use a mobile SEO
tool to find out your mobile page speed. Google provides a number of good
tools that you <can use. Browse the following link —
https://www.google.com/webmasters/tools/mobile-friendly/

eDon't Block CSS and JavaScript — Google recommends to use inline
CSS and Javascripts for mobile friendly websites so that they can be
downloaded along with the content. So if you don’t have much CSS, then
try to adjust it within the tag itself; but if you are using a lot of CSS in
separate files, then try to include it at the bottom which will stop blocking
the other content being downloaded. The same rule applies to Javascript,
which can be kept inside the page itself or included at the bottom of the
page. If you can avoid including the file at the top of the page, then make

use of async attribute while including them.
<script async type="text/javascript" src="]

Jquery.js"></script>

eMobile Redirects — Since mobile networks are normally slow, too
many redirects can hurt your page speed. If you are maintaining multiple
URLs, make sure all your links point to the relevant pages. In case you
maintain multiple URLs and you recognize a user is visiting a desktop
page from a mobile device and you have an equivalent mobile page at a
different URL, then redirect the user to that URL instead of displaying a
404 error.

eHeavy Images — Heavy images reduce the load time, however we
cannot completely get rid of them since they are useful and effective.
Therefore you should maintain a good balance between text and heavy
images. Use a good tool to optimize your images and save them at low
resolution to avoid heavy downloads.

127

e Avoid plug-ins and pop-ups — Plug-ins like Flash and Java may not
be available on user’s mobile device. Always ensure you don’t have any
unplayable content on your mobile page. Avoid using pop-ups on mobile
pages because it becomes quite clumsy to close these pop-ups on a mobile
device.

While creating a mobile page, always keep in mind that the user has
limited space to work on. So, you need to be as concise as possible while

creating titles, URLs, and meta-descriptions — of course without
compromising the essence or quality of information.
Useful Tools

Here is a list of some useful tools that you can use to find out how
mobile friendly your site is:

Google Webmaster Tools — Use the available Google tools and
techniques to understand what should be used and what should be avoided
while designing desktop as well as mobile websites.

Mobile Emulator — It lets you see how your site appears on a wide
variety of mobile devices.

Moz Local — Use this tool to ensure that your local SEO is in order.

Responsive Web Design Testing Tool — Use this tool to see how your
responsive site looks like on a variety of mobile devices with different
standard screen sizes.

Screaming Frog — This is a useful tool that allows you to analyze your
site and double-check all the redirects.

User Agent Switcher — This is a Firefox add-on that you can use to
find out how your site looks like when accessed from a different user
agent.

(8,172 symbols)
https://www.tutorialspoint.com/seo/mobile-seo-technigues.htm

TEXT 31 INTERNET OF THINGS: THE TOOLS,
PLATFORMS AND PROGRAMS YOU NEED TO KNOW

[oT development projects are everywhere, and affordable, advanced
technology is the driving force behind this fast-growing phenomenon.
Smaller, more accessible hardware and the flexibility to use common
programming languages make it easier than ever before to develop these
embedded IoT systems. From hobbyists programming their own single-
board computers to companies developing devices we can control from our
mobile devices, the 10T i1s rapidly expanding.

128

https://www.tutorialspoint.com/seo/mobile-seo-techniques.htm
https://www.upwork.com/hiring/development/eye-on-the-iot-an-intro-to-the-internet-of-things/

Whether you’re creating a quick prototype or an entire loT-powered
business application, here’s a look at the small but incredibly smart
technology of IoT development. We’ll cover IoT data, hardware, and
software considerations, plus the most popular IoT skills on the rise so
you’ll know what to look for when seeking out top talent for your IoT
Initiative.

Top 10T skills on the rise

The IoT has attracted the attention of companies all across the globe,
with many creating internal business units dedicated to IoT development.
According to a recent survey from analyst firm, Gartner, 43 percent of
organizations are using or plan to implement [oT in 2016.

IoT has become a top business initiative for many companies. So who
1s the talent who will be driving this new technology, and what skills will
they need to have? Here’s a look at the top growing global [oT categories
and skills on the Upwork platform to give you an idea of the scope and
demands of [oT projects.

Data science and analytics — 1027%*

o Data mining: 230%

« Machine Learning: 199%

« Matlab: 78%

IT & Networking — 120%

« Computer networking: 91%

« Network security: 46%

o Linux system administration: 26%

Engineering & Architecture — 68%

o Circuit design: 231%

« AutoCAD: 217%

« 3D design: 29%

Wearables — 68%

« Electrical engineering: 159%

« GPS development: 66%

« 3D design: 29%

Security - 51%

« Security infrastructure: 194%

« Security engineering: 124%

« Network security: 46%

Connected Home — 41%

« Raspberry Pi: 17100%*

o Circuit design: 231%

129

https://www.upwork.com/hiring/data/5-ways-the-internet-of-things-will-change-big-data/
http://www.gartner.com/newsroom/id/3236718
http://www.gartner.com/newsroom/id/3236718

« Microcontroller programming: 225%

Web, Mobile and Software Development — 40%

« Node.js: 86%

« MongoDB: 63%

« iPhone app development: 40%

Big data, data storage and processing/backend programming —
17%

« Apache Spark: 1667%*

« Big data: 183%

« MongoDB: 63%

Note: Data is sourced from the Upwork database and is based on the
number of job posts on Upwork from October 2014—-December 2015.

*Percentages reflect newer skills which have grown more quickly on
the site

Developing an 10T device or distributed 10T service

From a development standpoint, creating IoT devices hinges
on embedded programming. There are both software and hardware angles
to consider when creating an IoT prototype — the small computer
embedded in the object or device, and the software that makes it run.
As mentioned above, this includes things like wearables, connected home
devices, circuit design, GPS programming, 3D design, and more.

Fortunately, many of these software systems and software
development kits (SDKs) now use programming languages and operating
systems that engineers already use for mobile and web development, which
opens the field up to many more developers.

If you’re creating a fully fledged distributed [oT service, there are
many angles to consider: development of the embedded device itself, the
IT and networking services that power it, data and analytics, and design
and development of an integrated UI (e.g., a mobile app to control your
home’s thermostat).

You’ll need to:

« Choose your hardware platform (i.e., your processing board)

« Develop the application software, including any back-end and
networking support

« Create the integrated Ul

« Develop the APIs, beacons, web sockets, and procedure calls that
enable the high-level communications that occur between devices

« Establish security, data storage, and analytics measures

130

https://www.upwork.com/hiring/data/5-ways-the-internet-of-things-will-change-big-data/
https://www.upwork.com/hire/embedded-systems-freelancers/

loT development platforms

To get started, you’ll need a platform for the product development
team to develop and launch the product on.

One incredibly popular hardware/software platform for creating
interactive IoT objects and devices is the Arduino platform, which includes
a physical board processor, shields with individual libraries of C code, and
an integrated development environment (IDE) for writing, compiling, and
uploading code.

Windows has also gotten into the IoT game with Windows 10 IoT
Core, an [oT-optimized version of Windows 10 that uses Visual Studio and
the Arduino Wiring API. It runs on a few different boards, including
Raspberry Pi 2. IBM has launched Quarks IoT tools, another enterprise-
grade option.

IOT hardware & operating systems

The range of embedded devices is vast — from small prototypes people
develop for fun, to mass-produced technology — and there’s hardware to
suit every project. Usually, these small computers are referred to as boards,
or chips, and they come with a wide range of price points and processing
capabilities.

Hardware components can include low-power boards; single-board
processors like the Arduino Uno; field-programmable gate arrays (FPGA);
and shields, which are smaller boards that plug into main boards to extend
functionality by abstracting specific functions (e.g., GPS, light and heat
sensors, or interactive displays). A programmer will specify a board’s
inputs and outputs, then create a circuit design schematic to determine how
these inputs and outputs interact.

Another well-known IoT platform is Raspberry Pi 2, a tiny
affordable computer” that can house a web server that fits in the palm of
your hand. Often shortened to just “RasPi,” it has enough processing
power and memory to run Windows 10 [oT Core. RasPi is great for more
heavy-duty processing, especially when using the Python programming
language.

BeagleBoard is a single-board computer with a Linux-based OS that
uses an ARM processor. They’re capable of even more powerful
processing than RasPi, and have a price tag to match. Tech giant Intel’s
Galileo and Edison boards are other options, both great for larger scale
production, and Qualcomm has manufactured an array of enterprise-level
IoT technology for cars and cameras to healthcare. Samsung’s ARTIK
platform has three circuit boards, with small ones for wearables and a
larger 8-processor chip capable of video functionality.

131

https://www.upwork.com/hire/circuit-design-freelancers/
https://www.qualcomm.com/products/internet-of-everything
https://www.qualcomm.com/products/internet-of-everything

This 1s just a glimpse at some of the technology that’s out there; an
[oT pro can help recommend the kind of power and operating system
you’ll need on the hardware side that’s appropriate for your device or
prototype.

Embedded eyes and ears: sensor and beacon technology

Bluetooth beacons embedded within devices allow IoT objects to
broadcast information to nearby mobile devices. These low-power sensors
with technology like Bluetooth Low Energy (BLE) - the one-way
communication from objects to nearby devices — let our mobile phones
listen for signals when we’re close to an IoT object. BLE is different from
traditional Bluetooth technology in that it’s cheaper, requires less power
(one beacon can go three years without a charge), and is ideal for simple
applications and quick pops of data, like sending a coupon to a nearby
mobile phone.

In 2013, Apple launched iBeacon, a low-power bluetooth sensor that
can be embedded in objects and picked up by nearby 10S or Android
devices running apps that have been programmed with the Core Location
APIs. Another popular BLE beacon is AltBeacon, a free option with a bit
more data capacity than iBeacon. While both iBeacon and AltBeacon rely
on databases for their functionality, Google’s URIBeacon project delivers
URLs (similar to a QR code) rather than packets of information from a
database, so it’s easier to update, reconfigure, and has the entire web as its
database.

10T software & programming languages

IoT programming languages used to be unique to embedded systems,
but now this software uses more common languages that web developers
already know and use. So how do you choose which language to use for
your [oT project?

First, embedded systems have a certain set of limitations to consider —
low processing power, and smaller amounts of RAM and storage.
The most commonly used operating systems for these embedded
computers are Linux or UNIX-like OSs like Ubuntu Core or Android.
While you may have to decide based on your chosen hardware platform,
you also can opt for a language your developer is already familiar with, or
decide based on factors like its compatibility with your IoT ecosystem, the
size and memory of the code, efficiency requirements, or speed of
development.

[oT programming languages range from general-purpose languages
like C++ and Java to embedded-specific choices like Google’s Go
language or Parasail. Each offers a few advantages and disadvantages.

132

https://www.upwork.com/hire/bluetooth-freelancers/
https://www.upwork.com/hiring/mobile/android-development-what-to-know-who-to-hire/

Your developer will be able to advise you which is best, but here’s a quick
overview.

. C & C++:The C programming language has its roots in
embedded systems—it even got its start for programming telephone
switches. It’s pretty ubiquitous, and many programmers know it. C++ is
the object-oriented version of C, popular for both the Linux OS and
Arduino embedded IoT software systems. Both languages have an
advantage because they were designed to be written specifically for the
hardware they’re running on, so you can accomplish the fine-tuned coding
ideal for embedded systems.

2. Java: Where Java has an advantage over C and C++ is that the
code is less hardware-specific, making it more portable. It requires libraries
to run on different hardware, but once you’ve invested in that code base,
you’re all set — it’s the “write once, run anywhere” language.

3. Node.js and JavaScript: JavaScriptis a great option for
IoT. Node.js code can run a complete [oT system, running on both an
embedded smart device and the server-side software that’s powering it. It’s
an interpreted language, however, making it a better match for more robust
embedded systems, like Raspberry Pi. DevicelS is a JavaScript-based
development platform for programming sensors and controlling devices.

4. Python: Python has become one of the “go-to” languages in Web
development, and its use has spread to the embedded control and IoT
world — specifically the Raspberry Pi processor. Python is an interpreted
language, which makes it flexible, easy to read, and quick to write. Plus,
it’s a powerhouse for data-heavy applications.

5. Languages designed for 1/0O programming include Go from
Google, Rust from Mozilla, Forth, and Parasail — a language designed
specifically for embedded programming.

6. B#: Unlike most of the languages mentioned so far, B# hasn’t
been retrofitted for embedded systems, it was designed for them. It’s small
and fast, and can run on smaller hardware platforms thanks to its 24k
memory size.

IOT data and security considerations

While the 1oT opens up amazing new possibilities, it also opens up
new security concerns. Anytime we’re advancing the way we monitor,
detect, and track ourselves and the things around us, what we do with the
data — and how it’s sent across networks — can get sensitive. That’s why
security needs to be incorporated at every stage to keep hackers at bay.

An article in Sophos pointed out security vulnerabilities with
Wi-Fi-connected Ring doorbells, noting, “If you’re a programmer, and

133

https://www.upwork.com/hiring/development/cplusplus-the-language/
https://www.upwork.com/hiring/development/cplusplus-the-language/
https://www.upwork.com/hiring/development/the-java-platform/
http://www.upwork.com/hiring/development/what-is-javascript/
https://www.upwork.com/hiring/development/what-is-node-js/
https://www.upwork.com/hiring/development/python-programming-language/
https://nakedsecurity.sophos.com/2016/01/27/iot-doorbell-gave-up-wi-fi-passwords-to-anybody-with-a-screwdriver/

you’re enabling your latest electronic gadget to join the 0T, remember to
think security, even if you never expect that device to be installed on the
public-facing internet.”

This means it’s important to take certain programming steps (and
avoid certain security shortcuts) like proxies and encryption, to keep
hackers from using devices to access a user’s personal network.

(9,225 symbols)
https://www.upwork.com/hiring/development/internet-of-things-
platforms-and-programs-you-need-to-know/

TEXT 32 PYTHON: APOWERFUL LANGUAGE
FOR HIGH-TRAFFIC, DATA-HEAVY APPS

Python is a widely used, general-purpose, high-level back-end
programming language that’s highly valued by startups who need to
quickly prototype and develop applications, as well as data-driven
companies that need to integrate data analysis and statistical techniques
into their workflows.

Its combination of readability, flexibility, and suitability to data
science operations have made Python one of the most popular and beloved
languages according to developers on Stack Overflow. In this article, we’ll
explore what sets Python apart from other programming languages, why
it’s popular with data scientists, and what you should look for in a Python
engineer.

High-level, readable, and efficient

One of Python’s defining characteristics is its efficiency. Every
programming language has to balance the programmer’s time and the
machine’s resources. Python is biased toward the former, with a guiding
philosophy that comes down to “there should be one — and preferably only
one — obvious way to do something.” That can mean there’s a bit of a
learning curve as developers learn the ins and outs of Python syntax, but
the upside is that developers can do more with fewer lines of code
compared to more lower-level implementation languages like Java or C++.
This efficiency is especially valuable for startups who need to quickly
prototype applications and get them to market.

Python is also famous for its code readability, meaning that an
application written by a developer in Python is more likely to be
intelligible to the developers who have to maintain it months and years
down the line.

134

https://www.upwork.com/hiring/development/internet-of-things-platforms-and-programs-you-need-to-know/
https://www.upwork.com/hiring/development/internet-of-things-platforms-and-programs-you-need-to-know/
https://www.upwork.com/hiring/development/back-end-web-developer/
https://www.upwork.com/hiring/development/back-end-web-developer/
http://stackoverflow.com/research/developer-survey-2016#technology
https://www.upwork.com/hire/python-developers/
https://www.upwork.com/hiring/development/the-java-platform/
https://www.upwork.com/hiring/development/cplusplus-the-language/

Beloved by data scientists

Along with R and Java, Python is one of the most popular languages
for data science and statistical analysis. For data scientists, Python
combines Java’s suitability for building high-traffic web applications with
R’s focus on executing complex statistical functions.

Another one of Python’s strongest assets is its extensive set
of libraries. These libraries can make it easier for developers to perform
complex machine learning or statistical analysis tasks without having to
rewrite many lines of code. Some of the most popular libraries include
tools for data manipulation and visualization (NumPy, SciPy, and
matplotlib), data mining and Natural Language Processing (Pattern,
NLTK). Perhaps unsurprisingly, Python is the language of choice for
organizations with data-heavy workflows, from YouTube to the New York
Stock Exchange to the National Web Service.

Python basics

o It’s object-oriented.

o It’s cross-platform, working on Linux, Windows, Mac, and most
other operating systems.

« Python’s standard library supports:

HTML & XML

JSON

E-mail processing

HTTP Server libraries, easy for developing servers, and support
for FTP, IMAP, and other Internet protocols

« [t’s free and supported by an active open-source community.

« [t’s often substituted for PHP in the LAMP software stack.

Popular Python frameworks

Python engineers have a number of options when it comes to
frameworks. Frameworks are collections of packages that take care of the
implementation details so you can quickly write applications. Which
framework is best for your project depends on the scale of your
application, its complexity, and your data needs.

«Django: A very structured, all-in-one framework with lots of
“scaffolding,” it’s designed for large-scale, complex applications. Lots of
components and elegant database management make it a good choice for
data-heavy sites.

« Flask: A lightweight, minimalist framework, it gives developers a
more flexible approach to using Python. Similar to Pyramid, it has a loose
development style and is ideal for smaller, less complicated applications.

(0}
(0}
(0}
(0}

135

https://www.upwork.com/hiring/data/15-python-libraries-data-science/
https://www.upwork.com/hiring/data/machine-learning-intro/
https://www.upwork.com/hiring/data/natural-language-processing/
https://www.upwork.com/hiring/development/object-oriented-programming/
https://www.upwork.com/hiring/development/the-basics-of-web-development/
https://www.upwork.com/hiring/development/what-is-json/
https://www.upwork.com/hiring/development/php-frameworks-hiring-a-php-developer/
https://www.upwork.com/hiring/development/django-programming/

« Pyramid: The middle road of Flask and Django, this framework
offers a mix of flexibility and structure and is also good for complicated,
bigger applications.

« Twisted: A low-level networking Python framework.

« Tornado: A framework that’s good for web servers and web apps.

The Python developer’s toolbox

What should you look for in a Python engineer? Experience on large-
scale, high-traffic applications is at the top of the list, along with fluency in
SQL and database optimization. Common duties and core skills of Python
developers include modular programming, object-oriented programming,
and extensive experience with SQL.

Other related skills and technologies a Python engineer should know
include:

« Unix/Linux operating systems

« Frameworks: Django, Flask, or Pyramid

« MVC pattern

« HTML and XML

« Strong SQL knowledge and relational
database design understanding, with familiarity of MySQL, MS SQL, or
Postgres

« Experience with web-based user interfaces, including RESTful APIs

« Back-end cloud applications and web services

« Object-oriented programming

 the LAMP software stack.

(3,953 symbols)
https://www.upwork.com/hiring/development/python-programming-

language/

TEXT 33 INSIDE IT SECURITY: HOW TO PROTECT YOUR
NETWORK FROM EVERY ANGLE

Network security. Cyber security. Endpoint security. These different,
often overlapping arms of IT security can get confusing. As hackers get
smarter, it’s increasingly important to know what each does and how to
implement them into your own network.

In the wake of the highly-connected Internet of Things (IoT) and the
rise of the cloud, we’re facing increased vulnerabilities to our networks —
networks that are less monolithic, legacy architectures and more
distributed, microservice-based networks. With large-scale data breaches

136

https://www.upwork.com/hiring/development/django-programming/
https://www.upwork.com/hiring/development/the-basics-of-web-development/
https://www.upwork.com/hiring/data/sql-vs-nosql-databases-whats-the-difference/
https://www.upwork.com/hiring/data/a-guide-to-database-technology/
https://www.upwork.com/hiring/data/a-guide-to-database-technology/
https://www.upwork.com/hiring/development/object-oriented-programming/
https://www.upwork.com/hiring/development/choosing-the-right-software-stack-for-your-website/
https://www.upwork.com/hiring/development/python-programming-language/
https://www.upwork.com/hiring/development/python-programming-language/
https://www.upwork.com/hiring/development/eye-on-the-iot-an-intro-to-the-internet-of-things/
https://www.upwork.com/hiring/development/moving-to-cloud-servers/

making headlines, whether you’re a small startup or an enterprise
organization, security should be a top priority.

In this article, we’ll explore the different types of IT security and what
technologies and methods are used to secure each so you can arm your
network with the people and plans you need to have excellent lines of
defense in place and keep attacks at bay.

The IT security chain

Why are there so many types of IT security? The more links in a
network’s chain, the more opportunities for hackers to find their way in.
Each component requires its own subsequent security measures — with
many of them overlapping and working in tandem, much like the actual
components of a network do.

It’s also important to note that with security, there’s no one-size-fits-
all approach. Every network is different and requires skilled professionals
to create tailored plans across all fronts: apps, databases, network devices,
cloud servers, IT infrastructures, and the often weakest link in the security
chain: users. These security plans are living, breathing things that need to
be updated, upgraded, and patched on a constant basis, too.

Let’s start broad and work our way into narrower fields of security.

Information security and information technology (IT) security sound
similar, and are often used interchangeably, but they’re slightly different
fields. When we’re talking about information security (or infosec), we’re
actually referring to protecting our data — whether that’s physical or digital.
IT security is a bit more specific in that it’s only referring to digital
information security.

IT security pretty much covers all of the types of security within a
network, from components like databases and cloud servers to applications
and the users remotely accessing the network. They all fall under the IT
security umbrella.

Within this is another term to know: information assurance. This
means that any important data won’t be lost or stolen in the event of an
attack or a disaster — whether that’s a tornado wiping out a server center or
hackers breaking into a database. It’s commonly addressed with things like
backups and offsite backup databases and rests on three main pillars:
confidentiality, integrity, and availability (CIA). These philosophies carry
over into every other aspect of security, whether it’s application security or
wireless security.

IT security experts (also, system administrators and network admins,
which we’ll talk about next) are one of the most important team members

137

https://www.upwork.com/hire/information-security-freelancers/

you can hire. They’re responsible for the safety and security of all of a
company’s hardware, software, and assets, and regularly audit back-end
systems to ensure they’re airtight. Through security analysis, they can
identify potential security problems and create “protect, detect, and react”
security plans.

Network security: the best defenses

Network security is anything you do to protect your network, both
hardware and software. Network administrators (or system administrators)
are responsible for making sure the usability, reliability, and integrity of
your network remains intact. A hacker is capable of getting into a network
and blocking your access, for example by holding a system hostage for a
bitcoin ransom. You need an excellent defense in place to ensure you’re
protected.

Detecting weaknesses in a network can be achieved through:

« Security engineering: the practice of protecting against these threats
by building networks to be safe, dependable, and secure against malicious
attacks. Security engineers design systems from the ground up, protecting
the right things in the right ways. If a software engineer’s goal is to ensure
things do happen (click here, and this happens), a security engineer’s goal
is to ensure things don’t happen by designing, implementing, and testing
complete and secure systems.

As a part of security engineering, there are proactive measures to
predict where vulnerabilities might lie and reinforce them before they’re
hacked:

« Vulnerability assessment: Engineers identify the worst case
scenarios and set up proactive plans. With security analysis software,
vulnerabilities in a computer, network, or communications infrastructure
are identified and addressed.

« Penetration testing: This entails deliberately probing a network or
system for weaknesses.

« Network intrusion detection systems (NIDS): This type of
software monitors a system for suspicious or malicious activity.

Network admins are able to target threats (whether through suspicious
activity or large queries to a database), then halt those attacks, whether
they’re passive (port scanning) or active, like:

. Zero-day attacks, also called zero-hour attacks — attacks on
software vulnerabilities that often occur before the software vendor is
aware of it and can offer a patch. Or, hackers will initiate attacks on the

138

https://www.upwork.com/hire/security-analysis-freelancers/
https://www.upwork.com/hire/network-security-freelancers/
https://www.upwork.com/hire/network-administration-freelancers/
http://money.cnn.com/2016/02/17/technology/hospital-bitcoin-ransom/
http://money.cnn.com/2016/02/17/technology/hospital-bitcoin-ransom/
https://www.upwork.com/hire/security-engineering-freelancers/
https://www.upwork.com/hire/vulnerability-assessment-freelancers/
https://www.upwork.com/hire/penetration-testing-freelancers/

software vulnerability the day that it’s made public there’s an issue, before
users can install patches (hence the name “zero day”)

« Denial of service attacks

« Data interception and theft

o [dentity theft

« SQL injection

Other methods of protecting networks include:

« I'T Security frameworks: These act like blueprints for a company to
set up processes and policies for managing security in an enterprise setting.
Which a company uses can depend on the industry and compliance
requirements. COBIT is popular among larger, publicly traded companies,
ISO 27000 Series is a broad set of standards that can be applied to a
number of industries, and NIST’s SP 800 Series is used in government
industries, but can be applied elsewhere.

« Password “salt and peppering”: Adding a salt, or random data, to a
password makes common passwords less common. A pepper is also a
random value attached to the password, which is helpful in slowing
hackers down.

- Authorization, authentication, and two-factor authentication
(sometimes sent via SMS, although this can prove vulnerable as well)

. Virtual Private Networks (VPNSs)

« Application whitelisting, which prevents unauthorized apps from
running on a computer

. Firewalls: Block unauthorized access to a network or data
interceptions

« Honeypots: These are like decoy databases that attract hackers but
don’t house any important information.

« Anti-virus software

« Encryption — decoding data, in transit or at rest, including end-to-
end encryption often used in messaging apps and platforms that only
allows encrypted messages to be read by sender and receiver

Within network security is also content security, which involves
strategies to protect sensitive information on the network to avoid legal or
confidentiality concerns, or to keep it from being stolen or reproduced
illegally. Content security largely depends on what information your
business deals in.

Endpoint security: securing the weakest link

It’s said that users are often the weakest link in the security chain,
whether it’s because they’re not properly educated about phishing

139

campaigns, mistakenly give credentials to unauthorized users, download
malware (malicious software), or wuse weak passwords. That’s
why endpoint security is so crucial — it protects you from the outside in.

Endpoint security technology is all about securing the data at the place
where it both enters and leaves the network. It’s a device-level approach to
network protection that requires any device remotely accessing a corporate
network to be authorized, or it will be blocked from accessing the network.
Whether it’s a smartphone, PC, a wireless point-of-sale, or a laptop, every
device accessing the network is a potential entry point for an outside threat.
Endpoint security sets policies to prevent attacks, and endpoint security
software enforces these policies.

If you’ve ever accessed a network through a virtual private network
(VPN), you’ve seen endpoint security in action. Malware is one of the core
threats addressed by endpoint security, including remote access trojans
(RATs), which can hack into a laptop and allow hackers to watch you
through your webcam.

Internet security: guarding against cyber crimes

The internet itself is considered an unsecured network — a scary truth
when we realize it’s essentially the backbone for how we give and receive
information. That’s where internet security (or cyber security) comes in,
and it’s a term that can get pretty broad, as well. This branch of security is
technically a part of computer security that deals specifically with the way
information is sent and received in browsers. It’s also related to network
security and how networks interact with web-based applications.

To protect us against unwittingly sharing our private information all
over the web, there are different standards and protocols for how
information is sent over the internet. There are ways to block intrusions
with firewalls, anti-malware, and anti-spyware — anything designed to
monitor incoming internet traffic for unwanted traffic or malware like
spyware, adware, or Trojans. If these measures don’t stop hackers from
getting through, encryption can make it harder for them to do much with
your data by encoding it in a way that only authorized users can decrypt,
whether that data i1s in transit between computers, browsers, and websites,
or at rest on servers and databases.

To create secure communication channels, internet security pros can
implement TCP/IP protocols (with cryptography measures woven in),
and encryption protocols like a Secure Sockets Layer (SSL), or a Transport
Layer Security (TLS).

Other things to have in an internet security arsenal include:

140

https://www.upwork.com/hire/internet-security-freelancers/

« Forms of email security

« SSL certificates

« WebSockets

« HTTPS (encrypted transfer protocols)

« OAuth 2.0, a leading authorization security technology

« Security tokens

« Security software suites, anti-malware, and password managers

« Frequently updating and installing security updates to software, e.g.,
Adobe Flash Player updates

« Encryption, and end-to-end encryption

Cloud security: protecting data that’s here, there, and everywhere

Much of what we do over the web now is cloud-based. We have
cloud-based servers, email, data storage, applications, and computing,
which means all of the communication between onsite and the cloud needs
to be secure, too. With all of this connectivity and the flowing of
(sometimes sensitive) information comes new concerns with privacy and
reliability — and the cloud can be notoriously vulnerable. This has given
way to a new sub-domain of security policies: cloud computing security.

Computer security, network security, and information security as a
whole all need to be optimized for the cloud. For businesses that use public
clouds, private clouds, or a hybrid cloud — information is getting
exchanged between the two regularly and needs to be protected.

Building acloud security framework involves creating a strategic
framework for how all operations will happen in a cloud environment,
managing access, protecting data, and more.

Application security: coding apps to be safe from the ground up

A lot of the internet security focus is on patching vulnerabilities in
web browsers and operating systems, but don’t neglect application
security — a majority of internet-based vulnerabilities come from
applications. By coding applications to be more secure from the start,
you’re adding a more granular layer of protection to your internet and
network security efforts, and saving yourself a lot of time and money.

App security does rest on top of many of the types of security
mentioned above, but it also stands on its own because it’s specifically
concerned with eliminating gaps and vulnerabilities in software at the
design, development, and deployment stages. Security testing (which
should be conducted throughout the code’s lifecycle) digs through the
app’s code for vulnerabilities, and can be automated during your software
development cycle.

141

https://www.upwork.com/hire/cloud-security-framework-freelancers/

Choosing a language, framework, and platform with extra security
fortifications built in is paramount, too. For example, Microsoft’s .NET
framework has a lot of built-in security, and the Python Django-style
Playdoh platform addresses application security risks. Rising in popularity
is the Spring Security framework, a Java framework known for excellent
built-in authentication and authorization measures, and the PHP framework
Yii prioritizes security, as well.

Aside from framework choice, there are a few strategies to bolster
application security, including:

« Ensuring TLS

« Authentication and authorization measures

« Data encryption

« Sandboxing applications

« Secure API access

« Session handling

By adopting a proactive security stance, educating your users, and
taking advantage of the latest in authentication measures, you’ll be better
able to prevent, detect, and strengthen your company against attacks.
However, it’s important to remember that securing your network isn’t a
one-time thing—it’s an ongoing process that needs to be constantly
occurring and evolving along with your website and organization to ensure
you’re protected in the face of the ever-changing landscape of security
threats.

(11,119 symbols)
https://www.upwork.com/hiring/development/understanding-it-
security-and-network-security/

TEXT 34 ENCRYPTION BASICS:
HOW IT WORKS & WHY YOU NEED IT

We’ve entered a time when the conveniences of widespread
connectivity, including the cloud, have put us at more risk than ever of
getting hacked. When data does fall into the wrong hands, the
consequences can be devastating. High-profile data breaches and
ransomware attacks have organizations and individuals on red alert for
the best ways to safeguard their data and networks, both now and
for the future.

While good IT security strategies can be very effective in protecting
networks — essentially letting the good guys in and keeping the bad guys

142

https://www.upwork.com/hire/spring-security-freelancers/
https://www.upwork.com/hiring/development/understanding-it-security-and-network-security/
https://www.upwork.com/hiring/development/understanding-it-security-and-network-security/

out — how do you account for all of the data that’s traveling across the
airwaves between mobile devices, browsers, databases, and the cloud?

There’s a time-tested science that is increasingly becoming a crucial
link in the security chain: encryption. Encryption scrambles text to make it
unreadable by anyone other than those with the keys to decode it, and it’s
becoming less of an added option and more of a must-have element in any
security strategy for its ability to slow down and even deter hackers from
stealing sensitive information. If good encryption is capable of hindering
investigations by FBI experts, consider what it could do for you and your
company’s sensitive information.

If you’ve been putting off adopting encryption as a part of your
security policy, delay no more. Here’s a guide to the science of encryption,
and how you can begin implementing an encryption strategy today.

What is encryption and how does it work?

While IT security seeks to protect our physical assets — networked
computers, databases, servers, etc. — encryption protects the data that lives
on and between those assets. It’s one of the most powerful ways to keep
your data safe, and while it isn’t impenetrable, it’s a major deterrent to
hackers. Even if data does end up getting stolen, it will be unreadable and
nearly useless if it’s encrypted.

How does it work? Encryption — based on the ancient art of
cryptography — uses computers and algorithms to turn plain text into an
unreadable, jumbled code. To decrypt that ciphertext into plaintext, you
need an encryption key, a series of bits that decode the text. The key is
something only you or the intended recipient has in their possession.
Computers are capable of breaking encrypted code by guessing an
encryption key, but for very sophisticated algorithms like an elliptic curve
algorithm, this could take a very, very long time.

Here’s a very simple example. Say you want to encrypt this sentence:

“Protect your data with encryption”.

If you use a 39-bit encryption key, the encrypted sentence would look

like this:
“EnCt210a37f599¢b5b5c0db6cd47a6da0dcIb728e218¢10a37f599¢cb5b5c0db6cd47asQ
K8W/ikwIb97tVolfr9/JbqSNU42GIGFEU/NS5j9UEuWPCZUyV AsZQisvMxI9h9IwEmS.”

You can send that encrypted message to someone, separately share
the key, then they’re able to decrypt it and read the original sentence.

If you send an encrypted email, only the person with the encryption
key can read it. If you’re using an encrypted internet connection to shop
online, your information and credit card number are hidden from
unauthorized users, like hackers, illegal surveillance, or identity thieves.

143

https://www.upwork.com/hiring/development/hybrid-cloud-brief-intro/
https://www.upwork.com/hiring/development/understanding-it-security-and-network-security/
http://s/www.upwork.com/hiring/development/a-guide-to-server-technology/

If you encrypt data before syncing it with the cloud, the cloud — or anyone
breaking into it — can’t read that data. Even iPhones are encrypted to
protect their data if they’re lost or stolen — something that has made
headlines when organizations like the FBI or the NSA need access to them
for investigations.

But encryption can be used for bad, too. Ransomware attacks are
becoming more prevalent, also called denial of service (DOS) attacks that
use encryption software to lock users out of their computers until they pay
a fee.

Encrypting data “In transit” vs. Data “At rest”

Basically, the data we encrypt is always either:

. In transit, meaning it’s moving via email, in apps, or through
browsers and other web connections

« At rest, when data is stored in databases, the cloud, computer hard
drives, or mobile devices

Encrypting this data is achieved mainly through:

1. Full disk encryption (FDE): the primary way to protect
computer hard drives and the at-rest data on them. Any files saved to the
disk (or an external hard drive) are automatically encrypted. There are
intermediate options for disk encryption, as well — folder encryption,
volume encryption, etc. — that aren’t quite full-disk encryption, but in
between.

2. File encryption: a way to encrypt at-rest data on a file-by-file
basis so it cannot be read if intercepted. This isn’t automatic, but it’s
beneficial because that data will stay encrypted after it’s left its place of
origin.

3. End-to-end (E2E) encryption: obscures any content of messages
so only senders and receivers can read it, like the early Pretty Good
Privacy (PGP) email encryption software. The idea with E2E encryption
is that it tackles all the vulnerabilities on the communication chain:
the middle (intercepting a message during delivery), and both ends (sender
and receiver). This is not just a niche offering anymore, either — platforms
like Facebook Messenger and Apple’s iMessage have E2E encryption now,
too.

4. Encrypted web connections: via HTTPS, encrypted web
connections use a Secure Sockets Layer (SSL) or transport layer security
(TLS) protocols. With secure internet connections, we’re able to have
better protected communications on the web. These aren’t impenetrable,
but there’s less risk of exploit. How it works: HTTPS uses SSL and TLS

144

certificates when a browser and server communicate over the web. These
are encryption keys, and when both browser and server have them, they’re
authorized to access the encrypted data that’s passed between them. It’s a
very basic, but very important, security measure when connecting to the
web. If you’ve ever seen “https” instead of “http,” or noticed a lock in the
URL bar of your browser, you’re accessing a secure site.

5. Encrypted email servers: S/MIME (Secure/Multipurpose
Internet Mail Extensions) public key encryption essentially gives SMTP
(stimple mail transfer protocol) email servers a leg up by allowing them to
send and receive encrypted messages, not just simple text messages.

6. Pre-encrypting data that’s synced with the cloud: there’s
plenty of software available that can pre-encrypt data before it even gets to
the cloud, making it unreadable by the cloud or anyone who hacks into it.
Note that any files still stored on the local machine aren’t encrypted and
are still vulnerable. This accounts only for files sent to the cloud
encrypting tech.

Encryption can be simple, like secret-key, or incredibly complex, like
the Advanced Encryption Standard (AES), depending on the algorithm and
the length of the key. The longer the key, the more protection, but also the
more processing power required to handle the encrypting and decrypting
process.

A few types of encryption to know include:

. Secret-key algorithms: Also known as symmetric algorithms, or
private-key, this algorithm uses the same key for encryption and
decryption. This is a touch more vulnerable because anyone who gets a
hold of that one key can read anything you encrypt. Also, passing that
secret key over internet or network connections makes it more vulnerable
to theft.

« Public-key algorithms: These are also known as asymmetric
algorithms. With public-key encryption, there are two different, related
encryption keys — one for encryption, and one for decryption. The public
key 1s how the information is sent to you, and the private key decodes it
(much like having a secure lock box on your front porch that a delivery
person can put a package in, then only you can access that package with
your private key). The benefit here is the key isn’t subject to being sent
over insecure networks, but it does require more computer processing
power so it’s a bit slower.

« Block ciphers: Like the Triple Data Encryption Standard (DES), or
3DES, these encrypt data a block at a time. Triple DES uses three keys and

145

1s a pretty great encryption option for financial institutions that need to
protect sensitive information.

. Stream ciphers: A symmetric algorithm, it uses a keystream, a
series of randomized numbers, to encrypt plaintext one character at a time.
Rabbit, W7, and RC4 are popular stream ciphers.

« Elliptic curve cryptography: A form of public-key encryption, it
can be practically unbreakable for normal computers, or “hard”. This is
security industry speak for technology that’s not completely unbreakable,
but is generally accepted to be up to best standards.

« Blockchain cryptography: Blockchain technology is essentially a
type of distributed database, best known as the basis for Bitcoin, that uses
cryptography to safely store data about financial transactions. Blockchain
cryptography is a form of “cryptocurrency”, using public-key encryption,
and it’s valuable in its ability to provide direct, trustworthy and fraud-proof
transactions between users on a peer-to-peer network. Because blockchain
databases are distributed, they’re more resilient in the face of a DOS
attack, so more companies are exploring this.

A few popular algorithms include:

« Advanced Encryption Standard (AES): A block cipher, this is
pretty much the gold standard, per the U.S. Government. It offers 128-,
192-, and 256-bit encryption, the last two reserved for instances that
require extra-strength protection.

« RSA: This asymmetric algorithm uses paired keys and is pretty
standard for encrypting information sent over the internet, although it’s
been through some issues of getting broken, which have then been
resolved.

« IDEA (International Data Encryption Algorithm): This block
cipher with a 128-bit key has a great track record for not being broken.

« Signal Protocol: This open-source encryption protocol is used for
asynchronous messaging, like email.

« Blowfish and Twofish: Both of these block ciphers are free to use
and popular among e-commerce platforms for protecting payment
information. They were created by the same person and offer symmetric
encryption with keys varying in bit length. Twofish is the successor and
offers longer encryption keys.

« Ring Learning With Errors or Ring-LWE: This protocol ramps up
elliptic curves by adding in a new type of encryption that might be
unbreakable by quantum computers.

146

What is key management and why is it important?

Key management is another important aspect of encryption. Keys are
how all of that encrypted data becomes readable, so how you handle them
is just as sensitive as the data itself.

Many businesses worry about this aspect of encryption — after all, if
you lose an encryption key, you lose access to your data, too. That’s why
key management dictates how keys are stored (and shared) so prying eyes
can’t get a hold of them, making your entire encryption schema moot.

. Diffie-Hellman key exchange: This secure way for people to create
a key allows them to share secure information. This method is also touted
as “perfect forward secrecy”, meaning that theoretically, at no point in
the future can messages encrypted with a Diffie-Hellman key be decrypted.

« Double Ratchet algorithm: Based on the above, the Double Ratchet
algorithm is a key management algorithm used in end-to-end encryption of
instant messaging, like the Signal messaging app.

This article just scratches the surface of the art and science of
encryption, but hopefully it gives you enough basic understanding of this
important security technology.

(9,204 symbols)
https://www.upwork.com/hiring/development/introduction-to-
encryption-data-security/

TEXT 35 HOW CLOUD COMPUTING IS CHANGING
THE SOFTWARE STACK

Are sites, applications, and IT infrastructures leaving the LAMP stack
(Linux, Apache, MySQL, PHP) behind? How have the cloud and service-
oriented, modular architectures facilitated the shift to a modern software
stack?

As more engineers and startups are asking the question “Is the LAMP
stack dead?” — on which the jury is still out — let’s take a look at “site
modernization,” the rise of cloud-based services, and the other ever-
changing building blocks of back-end technology.

From the LAMP era to the Cloud

Stackshare.io recently published its findings about the most popular
components in many tech companies’ software stacks these days — stacks
that are better described as “ecosystems” due to their integrated,

147

https://www.upwork.com/hiring/development/introduction-to-encryption-data-security/
https://www.upwork.com/hiring/development/introduction-to-encryption-data-security/
http://stackshare.io/posts/the-next-generation-of-software-stacks

interconnected array of modular components, software-as-a-service (SaaS)
providers, and open-source tools, many of which are cloud-based.

It’s an interesting shift. Traditional software stacks used to be pretty
cut and dry. Acronyms like LAMP, WAMP, and MEAN neatly described a
mix of onsite databases, servers, and operating systems built with server-
side scripts and frameworks. When these systems grow too complex,
though, the productivity they enable can be quickly eclipsed by the effort it
takes to maintain them. This is up for debate, though, and anything that’s
built well from the ground up should be sturdy and scalable. However, a
more modular stack approach still prompted many to make the shift.

A shift in the software stack status quo?

For the last five or so years, the monolith, LAMP-style approach has
come more into question whether it’s the best possible route. Companies
are migrating data and servers to the cloud, opting for streamlined
API-driven data exchange, and using SaaS and PaaS solutions as super-
scalable ways to build applications. In addition, they’re turning to a diverse
array of technologies that can be more easily customized and integrated
with one another — mainly JavaScript libraries and frameworks — allowing
companies to be more nimble, and less reliant on big stack architectures.

But modularity is not without its complexities, and it’s also not for
everyone. SaaS, mobile, and cloud-computing companies are more likely
to take a distributed approach, while financial, healthcare, big data, and
e-commerce organizations are less likely to. With the right team, skills, and
expectations, however, it can be a great fit.

New, scalable building blocks like Nginx, New Relic, Amazon EC2,
and Redis are stealing the scene as tech teams work toward more modular,
software-based ecosystems — and here are a few reasons why.

What are some of the key drivers of this shift?

1. Continuous deployment

What’s the benefit of continuous deployment? Shorter concept-to-
market development cycles that allow businesses to give customers new
features faster, or adjust to what’s happening with traffic.

It’s possible to continuously deploy with a monolith architecture, but
certain organizations are finding this easier to do beyond a LAMP-style
architecture. Having autonomous microservices allows companies to
deploy in chunks continuously, without dependencies and the risk of one
failure causing another related failure. Tools like GitHub, Amazon EC2,
and Heroku allow teams to continuously deploy software, for example, in
an Agile sprint-style workflow.

148

https://www.upwork.com/hiring/development/choosing-the-right-software-stack-for-your-website/
https://www.upwork.com/hire/amazon-ec2-freelancers/
https://www.upwork.com/hire/redis-freelancers/
https://www.upwork.com/hiring/for-clients/leaner-dev-cycles-with-agile-and-distributed-engineering-teams/
https://www.upwork.com/hiring/for-clients/agile-culture-in-a-distributed-team/

2. The CLOUD is creating a new foundation

Cloud providers have completely shaken up the LAMP paradigm.
Providers like Amazon Web Services (AWS) are creating entirely new
foundations with cloud-based modules that don’t require constant
attention, upgrades, and fixes. Whereas stacks used to comprise a language
(Perl, Python, or PHP), a database (MySQL), a server, operating system,
application servers, and middleware, now there are cloud modules, APIs,
and microservices taking their place.

3. Integration is simplified

Tools need to work together, and thanks to APIs and modular
services, they can — and without a lot of hassle. Customer service platforms
need to integrate with email and databases, automatically. Many of the new
generation of software solutions not only work well together, they build on
one another and can become incredibly powerful when paired up, for
example, Salesforce’s integrated SaaS.

4. Elasticity and affordable scalability

Cloud-based servers, databases, email, and data processing allow
companies to rapidly scale up — something you can learn more in this Intro
to Cloud Bursting article. Rather than provision more hardware and more
time (and space) that it takes to set that hardware up, companies can
purchase more space in the cloud on demand. This makes it easier to ramp
up data processing. AWS really excels here, and is a top choice for
companies like Upwork, Netflix, Adobe and Comcast have built their
stacks with its cloud-based tools.

For areas like customer service, testing, analytics, and big data
processing, modular components and services also rise to the occasion
when demand spikes.

5. Flexibility and customization

The beauty of many of these platforms is that they come ready to use
out the box — but with lots of room to tweak things to suit your needs.
Because the parts are autonomous, you also have the flexibility to mix and
match your choice of technologies — whether those are different
programming languages or frameworks and databases that are particularly
well-suited to certain apps or projects.

Another thing many organizations love is the ability to swap out one
component for another without a lot of back-end reengineering. It is
possible to replace parts in a monolith architecture, but for companies that
need to get systems up and running fast — and anticipate a spike in growth
or a lack of resources — modular components make it easy to swap out one
for another. Rather than trying to adapt legacy technology for new

149

https://www.upwork.com/hiring/development/koa-js-a-future-proof-javascript-middleware-framework/
https://www.upwork.com/hiring/development/is-cloud-bursting-right-for-you/
https://www.upwork.com/hiring/development/is-cloud-bursting-right-for-you/

purposes, companies are beginning to build, deploy, and run applications
in the cloud.

6. Real-time communication and collaboration

Everyone wants to stay connected and communicate — especially
companies with distributed engineering teams. Apps that let companies
communicate internally and share updates, information, and more are some
of the most important parts of modern software stacks. Here’s where a chat
app like HipChat comes in, and other software like Atlassian’s JIRA,
Confluence, Google Apps, Trello, and Basecamp. Having tools like
these helps keep everyone on the same page, no matter what time zone
they’re in.

7. Divvying up work between larger teams and distributed teams

By moving architectures to distributed systems, it’s important to
remember that the more complicated a system is, the more a team will have
to keep up with a new set of challenges: things that come along with cloud-
based systems like failures, eventual consistency, and monitoring. Moving
away from the LAMP-style stack is as much a technical change as it is a
cultural one; be sure you’re engaging MEAN stack engineers and DevOps
professionals who are skilled with this new breed of stack.

So what are the main platforms shaking up the stack landscape?

The Stackshare study dubbed this new generation of tech companies
leaving LAMP behind as “GECS companies” — named for their
predominant use of GitHub, Amazon EC2, and Slack, although there are
many same-but-different tools like these three platforms.

Upwork has moved its stack to AWS, a shift that the Upwork
engineering team is documenting on the Upwork blog. These new
platforms offer startups and other businesses more democratization of
options — with platforms, cloud-based servers, programming languages,
and frameworks that can be combined to suit their specific needs.

- JavaScript: JavaScript is the biggest piece of the new, post-LAMP
pie. Think of it as the replacement for the “P” (PHP) in LAMP. It’s a front-
end scripting language, but it’s so much more — it’s a stack-changer.
JavaScript is powerful for both the front-end and back-end, thanks
to Node.js, and is even outpacing some mobile technologies. Where stacks
were once more varied between client and server, JavaScript is creating a
more fluid, homogeneous stack, with a multitude of frameworks like
Backbone, Express, Koa, Meteor, React, and Angular.

« Ruby and Python also dominate the new back-end stack, along with
Node.js.

150

https://www.upwork.com/hiring/for-clients/tools-technology-support-distributed-team/
https://www.upwork.com/hiring/for-clients/tools-technology-support-distributed-team/
https://www.upwork.com/o/profiles/browse/?q=MEAN
https://www.upwork.com/hire/devops-freelancers/
https://www.upwork.com/hire/devops-freelancers/
http://stackshare.io/posts/the-next-generation-of-software-stacks
https://www.upwork.com/blog/2016/07/introducing-upwork-engineering/
https://www.upwork.com/blog/2016/07/introducing-upwork-engineering/
https://www.upwork.com/hiring/development/what-is-javascript/
https://www.upwork.com/hiring/development/php-frameworks-hiring-a-php-developer/
https://www.upwork.com/hiring/development/what-is-node-js/

« Amazon Web Services (AWS): The AWS cloud-based suite of
products 1s the new foundation for many organizations, offering everything
from databases and developer tools to analytics, mobile and [oT support,
and networking.

« Computing platforms: Amazon EC2, Heroku, and Microsoft Azure

. Databases: PostgreSQL, with some MongoDB and MySQL.

(6,970 symbols)
https://www.upwork.com/hiring/development/how-cloud-computing-
Is-changing-the-software-stack/

TEXT 36 BACK-END TECHNOLOGY:
THE ROLE OF THE BACK-END WEB DEVELOPER

Your website or dynamic web application is a sum of layers —
structure, design and content, and functionality. The technology and
programming that “power” a site — what your end user doesn’t see but
what makes the site run — is called the back end. Consisting of the server,
the database, and the server-side applications, it’s the behind-the-scenes
functionality — the brain of a site. This is the ecosystem of the database
manager and the back-end developer.

Here’s a look at the role of back-end programmers: their
responsibilities, the environment they work in, the technologies they use,
and related back-end skills.

Understanding the back end: adding function to form

The back end is the machine that runs a site — the user doesn’t see it or
directly interact with it as with client-side technology, but it’s always
running in the background, delivering smooth functionality, a desktop-like
experience, and information from the database right into the browser.

Back-end development basics

BACK-END DEVELOPMENT & FRAMEWORKS IN Upwork'
SERVER SIDE SOFTWARE

] ﬂ;] l i @ H THE FRONT END
1 server-side
1 software Server
FRAMEWGORKS are libraries (scripts & frameworks) |
of server-side programming 1 Ll L | E_1] _
B

I
1
1
|
|
languages that construct the : server-sida scripts process E_| : APIs structure
back-end structure of a site. | requests and pull what they [l | how data is
1 need from the database el I exchanged §
! ! between a 8
_________ 1 1 : database and &
1 APl 1 any software =
The "STACK" comprises _: -.._) accessing it.
the database, server-side 1 @ |
framework, server, and : M :
operating system (O5). i Database | Internet
I]

https://www.upwork.com/hiring/development/launch-run-and-scale-your-application-in-the-cloud-with-heroku/
https://www.upwork.com/hire/windows-azure-freelancers/
https://www.upwork.com/hiring/development/how-cloud-computing-is-changing-the-software-stack/
https://www.upwork.com/hiring/development/how-cloud-computing-is-changing-the-software-stack/
https://www.upwork.com/hiring/for-clients/a-guide-to-server-technology/
https://www.upwork.com/hiring/data/a-guide-to-database-technology/
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
https://www.upwork.com/hiring/development/how-scripting-languages-work/

« Back-end code adds utility to everything the front-end designer
creates.

« The back end i1s a combination of a database and a software written
in a server-side language, which are run on web servers, cloud-based
servers, or a hybrid combination of both. A network’s server set-up can
vary, with the server-side workload divided up between various machines
(e.g., a server dedicated to housing the database).

« This server-side application directly interacts with the database via
an application programming interface (API), which pulls, saves, or changes
data.

« The data are returned and converted into front-end code a user
interacts with: filling out a form, creating a profile, shopping online, etc.

« In general, anything you see on a site is made possible by back-end
code, which exists on, and is powered by, a server.

The back-end developers’ toolbox

Back-end developers create and maintain the entire back-end function
outlined above. The back-end developer takes finished front-end code and
gives it working functionality — for instance, making values in a drop-down
menu possible by building the infrastructure that pulls values from the
database.

Other responsibilities of the back end can include

« Database creation, integration, and management — e.g., MySQL,
SQLite, PostgreSQL, and MongoDB. SQLite is lightweight and fast,
making it a very popular alternative to a larger MySQL driver.

«Using back-end frameworks to build server-side software,
like Express.js

« Web Server technologies — e.g., J2EE, Apache, Nginx (popular for
static content, like images, HTML or CSS files), and IIS

« Cloud computing integration — e.g., public cloud providers like
Amazon Web Services, or private cloud environments

« Server-side programming languages — like Python, Perl, PHP, Ruby,
and JavaScript, when implemented with the server-side development
environment, Node.js

« Operating systems: Linux- and Unix-like operating systems, MacOS
X, Windows Server

« Content management system (CMS) development, deployment, and
maintenance

« API integration

152

http://www.upwork.com/hiring/data/a-guide-to-database-technology/
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
https://www.upwork.com/hiring/for-clients/should-you-use-mongodb-a-look-at-the-leading-nosql-database/
https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.upwork.com/hiring/for-clients/a-guide-to-server-technology/
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
http://www.upwork.com/hiring/development/the-past-present-and-future-of-the-perl-programming-language/

« Security settings and hack prevents

« Reporting — generating analytics and statistics like system reports of
server load, number of visitors, geography of visitors, etc.

« Backup and restore technologies for website’s files and DB.

Server-side programming languages and frameworks

Back-end developers use an array of programming languages and
frameworks when building server-side software. They may choose a
framework to suit their working style or a site’s specific requirements.
They may also work with a language within a software stack. Popular
back-end technology includes:

« Ruby: Great for building complicated logic on the database side of a
site, Ruby bundles the back-end and database functionality that PHP and
SQL can offer as a pair — it’s great for startups, easy maintenance, and
high-traffic demands. It requires the Ruby on Rails framework, which has
vast libraries of code to streamline back-end development. Ruby-powered
sites: Hulu and Twitter

« Java: A subset of the C language, Java comes with a huge ecosystem
of add-on software components. At its core, Java is a variation of C++ with
an easier learning curve; what’s more, it’s platform-independent thanks to
the Java Virtual Machine. “Compile once, run anywhere” is its motto — and
it’s excellent for enterprise-level applications, high-traffic sites, and
Android apps.

« C#: C# 1s an enhanced, second-generation version of the C language,
one of the earliest back-end programming languages. C# is a general-
purpose, object-oriented version specifically developed by Microsoft for
the .NET Framework.

« Python: With fewer lines of code, the Python language is fast,
making it i1deal for getting things to market quickly. The emphasis is on
readability and simplicity, so it’s great for beginners. The oldest of the
scripting languages, it is powerful and works well in object-oriented
designs. Python-powered sites: YouTube, Google

« PHP: The most popular server-side language on the web, PHP is
designed to pull and edit information in the database. It’s most commonly
bundled with databases written in the SQL language. PHP is unique in that
it was built for the web, not adapted for it, and remains the most widely
used language on the web. PHP has a number of modern frameworks as
well.

« Perl: With 27 years of revisions and changes under its belt, Perl 5 is
a high-level, general-purpose, interpreted language powerful for
programming database integration with Oracle, Sybase, MySQL, and

153

https://www.upwork.com/hiring/development/ruby-developer/
https://www.upwork.com/hiring/development/the-java-platform/
https://www.upwork.com/hiring/development/c-sharp-developer/
https://www.upwork.com/hiring/development/python-programming-language/
http://ww.upwork.com/hiring/php-frameworks-hiring-a-php-developer/
https://www.upwork.com/hiring/development/the-past-present-and-future-of-the-perl-programming-language/

more. It runs on more than 100 platforms and is — like Python and Ruby —
object-oriented and open-source.

« Erlang: A general-purpose programming language, Erlang is also a
concurrent language, which means several processes can run
simultaneously on the language-level without external library support. It’s
used in the LYME and LYCE stacks, numerous CMS and databases,
GitHub, and Goldman Sachs’s platform, supporting its high-frequency
trading requirements.

« Node.js: This breakthrough development environment, part of the
JavaScript-powered MEAN stack, allows the front-end JavaScript
language to be used in server-side applications with the Express.js
framework.

Back-end software stacks

Depending on which “stack” you choose when building the back end,
your back-end developer will need cross-component expertise.

What is a software stack? “Stacks” are just bundles of software for
different aspects of your site’s back end, combined for their compatibility
and functionality to streamline development and deployment.
The components include an operating system, a web server, a
database, and server-side scripting language. You’re not limited to the
components in a stack — they’re interchangeable based on your needs and
customizable.

Two common stacks:

LAMP: Linux/Apache/MySQL/PHP

LAMP consists of free, open-source software components that work
well for dynamic websites and applications. It’s the most traditional stack
model, with a few variations for different operating systems, servers, and
database options. In the LAMP stack, PHP is interchangeable with the
languages Python and Perl.

LAMP benefits: flexible, customizable, easy to develop, easy to
deploy, secure, and comes with a huge support community since it’s open
source.

MEAN: MongoDB/Express.js/AngularJS/Node.js

MEAN is an all-JavaScript-powered replacement for the traditional
LAMP stack. It’s excellent for businesses looking to be agile and scalable,
offering flexibility with the MongoDB document-based database and lots
of features for building single- and multipage web applications. By using
JavaScript across the front and back ends, developers working on the client
side can easily understand the server-side code, which leads to greater
productivity for your team.

154

https://www.upwork.com/hiring/development/what-is-node-js/
https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.upwork.com/hiring/for-clients/a-guide-to-server-technology/
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
https://www.upwork.com/hiring/development/what-is-javascript/
https://www.upwork.com/hiring/for-clients/should-you-use-mongodb-a-look-at-the-leading-nosql-database/

MEAN Dbenefits: single language used, supports the MVC pattern,
uses JSON for data transfer, offers access to Node.js’s JavaScript module
library and the Express.js framework, is open source.

(6,382 symbols)
https://www.upwork.com/hiring/development/back-end-web-

developer/

TEXT 37 FRONT-END WEB DEVELOPMENT:
CLIENT-SIDE SCRIPTING & USER EXPERIENCE

Everything you see, click, and interact with on a website is the work
of front-end web development. Client-side frameworks and scripting
languages like JavaScript and AngularJS have made interactive websites
possible. Here’s a look at how this technology works in the scheme of a
website, and some of the most popular scripts and frameworks you should
know.

The Server vs. the Client

FRONT-END DEVELOPMENT Upwork-
1 2 3 |—=THE BACK END——I 5
A site is loaded Client-side scripts When a call to the I | Server-side scripts
in a browser from Run In the browser and database i$ reguired : = ! : prixcess the data,
the server. process requests without JavaScript and AJAX send | l'i': 1 then update the
call-backs to the server requests to the back end. : !; 1 | : site—populating
| =— drop-down menus,
Request i : : |] 'E‘_ N % E loading products to 3
Internet = | page, updating a user
Response 1 ||& |1 profile, and more,
) fﬁ\ : Database :
I | Servers |
| P Sy
Responsive front-end Everything a user sees in the 4 The back-end server-side scripts process
design allows a site to browser is a mix of HTML, the request, pull what they need from the
adapt to a user's device. €SS, and JavaScript. database then send it back.

All websites run on three components: the server, the database,
and the client. The client is simply the browser a person is using to view a
site, and it’s where client-side technology is unpacked and processed.
The server is at a remote location anywhere in the world — housing data,
running a site’s back-end architecture, processing requests, and sending
pages to the browser. The client is anywhere your users are viewing your
site: mobile devices, laptops, or desktop computers. Server-side scripting is
executed by a web server; client-side scripting is executed by a browser.

Client-end scripts are embedded in a website’s HTML markup code,
which is housed on the server in a language that’s compatible with, or

155

https://www.upwork.com/hiring/development/what-is-json/
https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.upwork.com/hiring/development/back-end-web-developer/
https://www.upwork.com/hiring/development/back-end-web-developer/
https://www.upwork.com/hiring/development/front-end-developer/
https://www.upwork.com/hiring/development/what-is-javascript/
https://www.upwork.com/hiring/development/angularjs-javascript-framework/
https://www.upwork.com/hiring/development/back-end-web-developer/
https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
https://www.upwork.com/hiring/development/the-basics-of-web-development/

compiled to communicate with, the browser. The browser temporarily
downloads that code, and then, apart from the server, processes it. If it
needs to request additional information in response to user clicks, mouse-
overs, etc. (called “events”), a request is sent back to the server.

Client-side scripting is always evolving — it’s growing simpler, more
nimble, and easier to use. As a result, sites are faster, more efficient, and
less work 1s left up to the server.

How Does Client-Side Scripting Work?

There is overlap between the two technologies as they work in
tandem, but there are core differences. Server-side scripting works in the
back end of a site, which the user doesn’t see. It creates a scaffolding for
the site to access its database, all the behind-the-scenes mechanics that
organize and power a website. Client-side code, however, handles what the
user does see.

« Scripts are embedded within and interact with the HTML of your
site, selecting elements of it, then manipulating those elements to provide
an interactive experience.

« Scripts interact with a cascading style sheet (CSS) file that styles the
way the page looks.

oIt dictates what work the server-side code is going to have to
accomplish (where utility should be built around these front-end
functions), and returns data that’s pulled from the site in a way that’s
readable by the browser. For example: If there’s a form for updating a
profile, the back end is built to pull specific data from the database to
populate that form, while front-end scripts populate the form with that
information.

o Scripts put less stress on the server because they don’t require
processing on the server once they’re downloaded, just when post-backs
are made. “Post-backs” perform specific call-and-answers with the server-
side code, and respond to the user immediately.

Client-Side Programming Languages & Frameworks

Now that you’ve got a broad view of what front-end technology is and
does, here’s a look at some of the most widely used scripting languages
and front-end frameworks. Languages are almost always used in the
context of their frameworks, which make quick work of complicated code
with libraries of pre-packaged, shareable code, and lots of add-ons. Your
developer may use one or a combination of these when building the front
end of your site.

156

https://www.upwork.com/hiring/development/server-side-scripting-back-end-web-development-technology/
https://www.upwork.com/hiring/development/back-end-web-developer/
https://www.upwork.com/hiring/development/back-end-web-developer/
https://www.upwork.com/hiring/development/the-basics-of-web-development/
https://www.upwork.com/hiring/development/the-basics-of-web-development/
https://www.upwork.com/hiring/development/css-cascading-style-sheets/
https://www.upwork.com/hiring/development/front-end-developer/

«HTML and CSS: These are the core building blocks of any
site. HTML dictates a site’s organization and content. CSS comprises the
code for every graphic element — from backgrounds to fonts — that make up
the look and feel of a website.

« JavaScript: JavaScript is client-side scripting. The most widely used
client-side script — nearly every site’s front end is a combination of
JavaScript and HTML and CSS. JavaScript is fueled by an array of
excellent frameworks that simplify it and give it more agility.

JavaScript Frameworks:

« Angular]JS: An incredibly robust JavaScript framework for data-
heavy sites

«JQuery, jQuery Mobile: A fast, small, JS object library that
streamlines how JavaScript behaves across different browsers

« Node.js: A server-side platform that uses JavaScript, and is changing
the way real-time applications can communicate with the server for faster
response times and a more seamless user experience. It works with another
JavaScript framework, Express.js, to build server-side Web applications.

« Bootstrap: A mobile-first framework that uses HTML, CSS, and
JavaScript to facilitate rapid responsive app development

« React, for user interface design

« Express.js, Backbone.js, Ember.js, Meteor]JS, and more

« TypeScript: A compile-to-JavaScript language that is a superset of
JavaScript, created by Microsoft

« AJAX (JavaScript + XML) — a technology that allows specific parts
of a site to be updated without a full-page refresh by asynchronously
connecting to the database and pulling JSON- or XML-based chunks of
data.

« VBScript & JScript are Microsoft’s front-end scripts that run on the
ASP.NET framework. JScript is Microsoft’s reverse-engineered version of
JavaScript.

« ActionScript, which creates animated interactive web applications
for Adobe Flash Play

. Java (as “applets”) snippets of back-end code that run independently
with a run-time environment in the browser

Tip:

It’s worth researching what browsers your primary audience is most
likely to use, and what back-end scripts and APIs you’re using, then decide
on a script based on a stack or compatibility.

157

https://www.upwork.com/hiring/development/advantages-of-html5/
https://www.upwork.com/hiring/development/what-is-javascript/
https://www.upwork.com/hiring/development/what-is-javascript/
https://www.upwork.com/hiring/development/angularjs-javascript-framework/
https://www.upwork.com/hiring/development/jquery-javascript-library/
https://www.upwork.com/hiring/development/what-is-node-js/
https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.upwork.com/hiring/development/bootstrap-3-front-end-framework-responsive-mobile-first-sites/
https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.upwork.com/hiring/development/how-ajax-works/
https://www.upwork.com/hiring/development/what-is-json/
https://www.upwork.com/hiring/development/asp-net-framework/
https://www.upwork.com/hiring/development/asp-net-framework/

Client-Side Scripting Breakthroughs

An important breakthrough that changed the hard-and-fast rules for
client side vs. server side? AJAX. The old standard was that server-side
processing and page post-backs were used when the browser needed to
interact with things on the server, like databases. AJAX, with its
asynchronous calls to the server, can pull the data instantly and efficiently,
without requiring a post-back. Read more about how it works in this AJAX
Front-End Technology article.

Another major boost isjQuery, a fast, small, and feature-rich
JavaScript library with an easy-to-use API that works across a multitude of
browsers. Like code libraries do, jQuery changed the way that millions of
people write JavaScript, simplifying a number of other client-side scripts
like AJAX at the same time.

(5,176 symbols)
https://www.upwork.com/hiring/development/how-scripting-
languages-work/

158

https://www.upwork.com/hiring/development/how-ajax-works/
https://www.upwork.com/hiring/development/how-ajax-works/
https://www.upwork.com/hiring/development/jquery-javascript-library/
https://www.upwork.com/hiring/development/how-scripting-languages-work/
https://www.upwork.com/hiring/development/how-scripting-languages-work/

YACTD 4: TJIOCCAPUN

A

Accomplish — BBITIOJTHATE

Agent-based — areHTHOE MOJICIMPOBAHUE.

Airspeed indicator — uHAUKATOP CKOPOCTH BO3AYIIHOIO ITOTOKA
Altimeter — anpTUMETpP/BBICOTOMED

Analyst — ananuTHk

API (Application Program Interface) — uarepdetic mpukiaaHOR
IPOIrpaMMBbI

Applicable — npumenumbIii

Application silos — cepeep npunoxeHus

Application — npunoxenue

ASP (Active Server Pages) — akTUBHBIE CEpBEPHBIC CTPAHMIIBI
(TexHomorus AJist co3nanus Web-npuioKeHui)

Attitude indicator — aBuaropuzoHT

Automation — aBromarusanus

B

Back up — pe3epBHOE KOMMPOBAHUE.

Back-end development — paspaboTka BeO-IIpHIIOKEHHI Ha CTOPOHE
cepBepa

Baseline — 6a3oBas cTpoka

Black-box testing — rectupoBaH#me 110 CTpATETHH YEPHOTO SITUKA

Binary — nBonyHbIit

C

Clarity — ueTkoCTh

Client-server database architecture — 6a3a TaHHBIX apXHTEKTYPBI
KJIIMEHT / cepBep

Cloud — «o6mako»

Code refactoring — ynydmenue koja

Coding standard — crangapt KOAUpOBaHUs

Compass system — kypcoBasi cuctema

Concurrently — ogHOBpeMeHHO

Connectivity — BO3MOXXHOCTH CETEBOTO B3aUMOJICHCTBHSI, CONPSIKEHHOCTh
Conscious intervention — co3HaTenpHOE BMEIIATEILCTBO
Consistent — nmociexoBaTeIbHBINA

Constraint — orpanuueHue

159

https://en.wikipedia.org/wiki/Flight_instruments#Altimeter
https://ru.wikipedia.org/wiki/Технология
https://en.wikipedia.org/wiki/Flight_instruments#Attitude_Indicator

Constructive cost model — monenupoBanre CTOUMOCTH Pa3pabOTKH
Contribute — BHOCHTB BKJIa]

CPU (Central Processing Unit) — nentpanbHsIii mponeccop, LIITY
CSS (Cascading Style Sheets) — kackaaHble TaONMHIIBI CTUICH
Customer — 3aka34uk

Customization — Hactpoiika

D

Data — nanurle.

Data store — xpaneHue nH(poOpMaIuu.

Database — 6a3a nanHbIX

Database model — mogens B/I.

DBMS (Database Management System) — cucrema ynpaicHHUs 0a30i
JTAHHBIX

Dedicated hardware resources — BeIic/ICHHBIC allapaTHbIC PeCypPChI
Define — onpenensate

Deliver — nocraBnsars

Deploy — npuMeHsTh; HCIIOIB30BaTh

Design flaws — omm6ka mpoeKTHpOBaHUS

Design verification — Bepudukamnms nmpoekra

Developer — pa3paboT4uk.

Development- pa3spaboTka

Dimension — pasMepHOCTH

Distinguish — Bel1eUTH

distribution — pacnpenencuue

Dynamic Host Configuration Protocol (DHCP) — npotokout
JTUHAMUYECKOU KOH(DUTYpallUK y3i1a

Dynamic IP addresses — nunamuueckuii IP-agpec
Disposition — nukBugaIms

E

Editing tools — uHCTpyMEHUTHI pelaKTUPOBAHUS

Embash — nnunnoe tupe

Encryption — mudpoBanue

Engagement — BoBieueHue, yuactue

Ensure — obecnieunBath, yOeIUuThHCS

Enterprise — npeanpustue

Estimate — npuGiM3uTeIbHO TOICUUTHIBATD

Evaluation — orienka

Extreme Programming — skcTpeMaibHOE TPOrpaMMHPOBaHUE

160

http://www.multitran.ru/c/m.exe?t=6044879_2_1&s1=DHCP
http://www.multitran.ru/c/m.exe?t=6044879_2_1&s1=DHCP
http://www.multitran.ru/c/m.exe?t=5881168_2_1&s1=dynamic%20IP

=
Feasibility — BO3MOXXHOCTh TEXHHUYECKOW peain3aiun

Feature — ¢ynxkius.

Feedback — oOpatHast cBs3b

File-processing systems — cuctemsl 00pab0TKH (aitios.

Flexibility — ruOxoctb

Flight Director Systems — cucreMa KOMaHIHBIX THJIOTaXXHBIX IPUOOPOB,
KOMAaHTHO-TTUJIOTa)KHAsT CUCTEMa

Flight instruments — nmioTa)xHO-HaBUTAIUOHHBIA IPHOOP

Front-end development — pa3paboTka BeO-TIpIIIOKEHUH Ha CTOPOHE
KJIMECHTA

Functionality — pyHKIIMOHATILHOCTH

G

Gathering — coop

Grant — npenocTaBUTh

Grid computing — cuctema pacrpezesieHUs] MOIITHOCTEH U CUCTEM
XpaHCHUS

Gyroscopic Systems — rupockonuyeckas cCucTemMa

H

Hardware — anmapatHoe oOecneueHue.

Heading indicator — naagukaTop KypcoBBIX YIJIOB, YKa3aTelb Kypca
Holistic — uenocTHbIit

Host name — ums xocta (MM XOCT-KOMIBIOTEPA)

HTML (HyperText Markup Language) — s3bIk THTIEPTEKCTOBOM
pa3MeTKu

I

Identification — unenTudukams
Implementation — peanu3zanus
Incremental — Bo3pactanue

Independent — He3aBHCHMBIH

Integration — oObeMHEHHE

Intermediate — mpomeKyTOUHBII
Intranet — UaTpaner

Intruder — Hapyuuresb,310yMBIILICHHAK
Involve — BoBiekath

IP (Internet protocol) address — anpec cereBoro nporokosna IP
Iteration — moBTOpeHue

Iterative model — ureparuBHas Mmozenb

161

https://en.wikipedia.org/wiki/Flight_instruments#Flight_Director_Systems
https://en.wikipedia.org/wiki/Flight_instruments#Gyroscopic_Systems

J
Junkware-cnam
Java ['d3a:vo] — fIBa, A3BIK TPOTpaMMHUPOBAHUS

K
Kernel — sapo

L

LAMP (Linux/Apache/MySQL/PHP) software stack — mporpammHbIii
ctek Linux/Apache/MySQL/PHP

Laptop — HOyTOYK

Layout — makeT

Life-cycle — sxku3HeHHBIH UK (TIPOTPaMMHOTO TIPOAYKTA)

Linear — nuHeHHbI#I

Local area networks — noxansHsie cetn

Long-term — gonarocpoyHsbIit

M

Magnetic compass — MarHuTHBIA KOMITAc
Mainframe — meitadpeiim

Maintain — mognepxuBaTh

Maintenance — noanepxka

Malicious (program) — BpemoHocHas (ImporpamMma)
Malware — Bpe1OHOCHBIE TPOTPAMMEI
Management — ynpasieHue.

Metaphor — meradopa (mporpamma)
Microcomputers — MUKpOKOMIIBIOTEP
Modem — moaem (MOAYASATOP-AEMOAYISATOP)
Modification — uamenenwue

Modularization — nenenne Ha Moy
Monitoring — KOHTPOJIb

Multitasking — MHOr03a1a4HOCTH

Multi-tier — MHOTOYpOBHEBBII

Multi-user — MHOTOIoOJIb30BaTEIbCKHUIA

162

https://en.wikipedia.org/wiki/Flight_instruments#Magnetic_compass

N

Navigational systems — HaBuraruoHHbIE CHCTEMBI
Network — cetsb

No strings attached — 6e3 o0s3aTenbCTB

Nondirectional Radio Beacon (NDB) — nenanpaBiieHHBbI#
padnuoMasiK; IMIPpUBOAHAA PAAUOCTAHIIA

Normalization — Hopmanu3anus

@)

Object-oriented design — 00bEKTHO-OPUEHTHUPOBAHHOE TIPOCKTUPOBAHKE
Object-oriented database systems — o0bekTHO-OpHeHTHpPOBaHHBIE CYBJ]
Object-oriented programming — 00beKTHO-OPUCHTUPOBAHHOE
IpOrpaMMHUPOBaHUE.

Octet — okTeT (ymopsimoueHHbIN HA0Op U3 § OUT)

Ongoing — moCTOSHHBIH

Open source — OTKPBITBIM UCXOIHBIM KOJIOM

Operation — padora, onepanus

P

Pair programming — napHoe mporpaMMUpPOBaHUE

Patch — maTu

Persist — coxpaHsTbCs

Phase — dasza

PHP (Personal Home Page) tools — HcTpyMeHTBI AJis CO3MaHHMs
NIEPCOHAIILHBIX BEO-CTPaHUIL

Pipelining — koHBeliepHbIil peKKM; KOHBEHepHas 00paboTKa
Pool — oGruit Gpon

Preinstalled — npeaycranoBieHHbBIH

Private network — yactHast (BHyTpeHHS1) CE€Th

Procedure — npouenypa

Processing — o6paboTka

Programmer — nporpaMMucT

Programming language — s13bix iporpaMMHUpOBaHUS
Prototype — npotoTun

Prototyping — npoTtoTunupoBaHue

Pseudo code — niceBAOKOI; CHMBOJIIMYECKHI KO

163

https://en.wikipedia.org/wiki/Flight_instruments#Navigational_Systems
https://en.wikipedia.org/wiki/Flight_instruments#Nondirectional_Radio_Beacon_.28NDB.29

R

Ransomware — BpeioHOCHasi Xakepckas rnporpamma (¢ TpeboBaHHEM
BBIKYTIQ)

Recognize — pacrno3HoBathb

Recover — BoccraHaBnvBaTh

Redistribute — nepepacnpenensats

Redundant — u3nummaui

Refer — otHOCHTBCS

Relate — umeTs oTHOIICHHE

Relational algebra — pensuronnas anreopa
Relational database — pensinonnas b/]

Relational model — peasiimonnas Mozenb JaHHBIX
Relationship — otHomenune

Release — Brimyck

Relevant — coorBetcTByrOmMit

Repository — xpanunuiie

Requirement — tpeboBanue

Requirement gathering — c6op TpeboBanwMit
Resilient — ynpyruii

Responsive Web Design — agantuBHbIN BeO-au3aiiH
Roadmap — cxema, miaH aeldcTBHIA

Robust — kpenkuii

Root user — npuBUIErHPOBAHHBIN MMOJIB30BATEIb
Rootkit — pyTkuT (HaGOp MPOrPaMMHBIX CPECTB JISI MACKUPOBKH)
Router — mapuipyTtuzaTtop

Run —paborarts

S

Scope — oobem

Scrutiny — BHUMaTEJIbHOE H3YUYCHHE

Search Engine Optimization — ontuMu3anus caiiTa B TOMCKOBBIX
crcTeMax

Sequential — mosTanHbIi, MOCaCAOBATEIHHBIH

Serviceable — o6cyxrBaeMblid, TOJIE3HBIN, TIPUTOTHBIN
Single-user — ogHONOIB30BATEIBCKHUI.

Software — nporpaMMHOe 0OeCIICUCHHE.

Software design — mpoekTrpoBaHUE IPOrPAMMHOI0 00ECIICUCHHS
Spiral model — cniupanbpHast Moemh

Spreadsheet — snekrponHas TabdauIa

164

Structured design — cTpyKTypHOE MPOCKTUPOBAHUE
Structured programming — cTpyKTypHUpOBaHHOE (CTPYKTYPHOE)
POrpaMMHUPOBAHHE

Sub-domains — cy6aomMeH (TIoiI0MEH)

Submit — oripaBuTH

Subnet — noaceTk

Subsequent — oceyromnuii

Subset — noarpymnma, pa3sHOBUIHOCTb

Subsystem — moacrcTema, COBOKYITHOCTD MOTYJICH

Sync — cHHXpOHM3AIHs, CHHXPOHU3HPOBATh

Systems Development Life Cycle (SDLC) — >kxu3HEHHBIH UK
pa3pabOTKH CUCTEM

T
T arrangement — pacnonoxxenue B popme OykBbl T

TCP/IP protocol — nporokoa TCP/IP

Test case — TeCTOBBIN ITPUMED

Threat — yrpo3a

Top-level domain — gomMeH BeICIIEro ypoBHS

Transaction processing systems — cucrembl 00paOOTKH TPaH3aKIIHMA
Treat — paccMatpuBarh

Turn Indicator — kypcoyka3aTeb, THPOIIOTyKOMIIAC

U

Unauthorized — HecaHKITMOHUPOBAHHBIH
Unwieldy — rpomo3axuii

Updater — nporpamma 0OHOBIICHHS
Upgrade — moaepHu3npoBath

User — nons3oBaTenb

User environment — cpeia mojib30Bates
User Interfaces (Ul) — nosip3oBatenbckuii HHTEpdEiic
User-friendly — y1oOHBI#, MOHATHBIM
Utility — yrumura

Utilized — ncnions3oBaTh

165

http://www.multitran.ru/c/m.exe?t=5907856_2_1&s1=sub%20domain
https://en.wikipedia.org/wiki/Flight_instruments#T_arrangement
http://www.multitran.ru/c/m.exe?t=6767943_2_1&s1=top-level%20domain
https://en.wikipedia.org/wiki/Flight_instruments#Turn_Indicator

\/

V-model — V-monens (pa3paboTka uepes TeCTUPOBAHHE)

Validation — moaTBepskaeHHE COOTBETCTBUS

Verification — mpoBepka MOJTHOMOYHH, TOATBEPIKICHUE

Vertical speed indicator — yka3zaTenb CKOpOCTH HaOOpPa BBICOTHI
Very-High Frequency Omnidirectional Range (VOR) —
BCEHAIPABJICHHBIN a3UMyTaAJIbHBIN paaroMask Y KB auamazona VOR
Vulnerability — ys3BumocTthb

w

Waterfall model — kackagnas momess (Bogoman)

Web development — Be6 pazpaboTka

Web publishing — onnaiin myoaukammm

WEB-project — uHTepHET-IPOEKTHI

White-box testing — TecTupoBaHHe Ha OCHOBE CTPATETUU OEJIOro SIuKa
Wi-Fi (Wireless Fidelity) — dopmar nepenaun 1miupoBbIX TaHHBIX 110
pajroKaHaliaM

Workgroup — paGouas rpyrmrma

166

BUBJIUOIPA®UYECKUHN CIIMCOK

1. XKunkos, A. B. Ilonsatue «HayuyHo-texHuueckuii nepesoa» / A. B.JKua-
koB // Science Time. — Ne 4 (4). —2014. — C. 99-102.

2. Kopyxoga, JI. B. Ilpunnunsl oT0opa Marepuaiia s HOATOTOBKHU
CTYJICHTaMH JOTOJHUTEIHLHOTO JIOMAITHErO0 YTCHHS 110 aHTIUHCKOMY
s3piky / JI. B. KopyxoBa // CoBpeMeHHBIE TEXHOJOTHH OOYUYCHHS
MHO-CTPAHHBIM si3bIKaM : MexayHapoaHass Hay4YyHO-TIpaKTHYecKas
koHpepenuus (YbsHOBCK, 25 sHBapst 2012 roma) : cOOPHUK HAYYHBIX
TpynoB / oTB. pea. H. C. apadyrannosa. — Yiesaosek : Yal'TVY, 2012. —
C. 105-107.

3. KOcymnoga, III. b. HekoTopkie CIOKHOCTH MEPEBOAA AHTJIMHCKUX TEX-
Huueckux tepmuuoB / 1. b. FOcynoBa // Mononoit yuensiii. — 2015. —
Ned4. — C. 808—811.

4. Tooley, Mike. Aircraft Digital Electronic and Computer Systems
[DnextponHsii pecype] / M. Tooley. — 2™ edition. — Routledge, 2013. —
Available at: http://www.readbook5.com/aircraft-digital-electronic-and-
computer-systems/ (Accessed August 27, 2016).

5. What is 1C:Enterprise? [DnexkTpoHHBIA pecypc]. — 3ari. ¢ dKkpaHa. —
Pexxum noctyna: http://1c-dn.com/ (nara oopamenus 10.11.2016).

6. 3D printing.com [caiiT] [DnekTpoHHbIH pecypc]. — Pexxum nocryma:
http://3dprinting.com (mara oopamenus 10.11.2016).

7. Right now in computer [DneKTpoHHBIN pecypc]. — 3ari. ¢ 3KpaHa. —
Pexxum noctyna: http://computer.howstuffworks.com (mara oOpamienus
10.11.2016).

8. Oracle Help Center [OnextpoHHBI pecypc]. — 3ami. ¢ dKpaHa. —
Pexxum noctyna: http://docs.oracle.com (nara oopamenus 10.11.2016).

9. Goinglinux.com [caiiT] [DnekTpoHHBIN pecypc]. — Pexum nocrymna:
http://goinglinux.com (mata oopamenus 10.11.2016).

10. Vic Fay-Wolfe Fall2005 [DnexTponnsiii pecypc]. — 3ari. ¢ skpaHa. —

Pexum J0CTyma: http://homepage.cs.uri.edu/faculty/wolfe (mara
obpamenus 10.11.2016).
11. ISTQB Exam Certification [DnektpoHHbIl pecypc]. — Pexum

noctymna: http://istgbexamcertification.com (natra oopamienus 10.11.2016).
12. RonJeffries.com [caiiT] [DnekTpoHHbIN pecypc]. — Pexxum nmocryma:
http://ronjeffries.com (nata o6pamenus 10.11.2016).

13. SearchSQLserver [OnekTtponnbiii pecypc]. — Pexum pgocrtyna:
http://searchsqlserver.techtarget.com (mara oopamienus 10.11.2016).

167

http://cyberleninka.ru/journal/n/science-time
http://venec.ulstu.ru/lib/go.php?id=5239
http://venec.ulstu.ru/lib/go.php?id=5239
http://venec.ulstu.ru/lib/go.php?id=5239
http://venec.ulstu.ru/lib/go.php?id=5211
http://venec.ulstu.ru/lib/go.php?id=5211
http://venec.ulstu.ru/lib/go.php?id=5211
http://venec.ulstu.ru/lib/go.php?id=5211
http://venec.ulstu.ru/lib/go.php?id=5211
http://www.readbook5.com/aircraft-digital-electronic-and-computer-systems/
http://www.readbook5.com/aircraft-digital-electronic-and-computer-systems/
http://1c-dn.com/
http://3dprinting.com/
http://computer.howstuffworks.com/
http://docs.oracle.com/
http://goinglinux.com/
http://homepage.cs.uri.edu/faculty/wolfe
http://istqbexamcertification.com/
http://ronjeffries.com/
http://searchsqlserver.techtarget.com/

14. The Tech Terms Computer Dictionary [DiaekTpoHHBIN pecypc]. —
Pexxum noctyna: http://techterms.com (nata obpamenus 10.11.2016).

15. Whatismyipaddress.com [cailT] [DnekTpoHHbIl pecypc]. — Pexum
noctymna: http://whatismyipaddress.com (;1ara o6pamenus 10.11.2016).

16. Free essays, term papers, research paper and book report
[DnexTpoHHBIN pecypce]. — Pexxum pocryma: http:/www.123helpme.com
(mara obpamenus 10.11.2016).

17. Free Online IT Tutorials and Internet Training [DneKTpOHHBIN

pecypcl. — 3arm. C AKpaHa. — Pexum JIOCTYIIA:
http://www.inetdaemon.com/tutorials (mata oopamenus 10.11.2016).
18. Kean University [OnekTpoHHbIi pecypc]. — Pexum pocrtyna:

http://www.kean.edu (mara obpamienns 10.11.2016).

19. Computer Support and Managed IT Services [DnexkTpoHHBIN pe-
cypc]. — Pexum nocryma: http://www.nashnetworks.ca (mara oGpareHus
10.11.2016).

20. Scientific American [DiekTpoHHBIN pecypc]. — Pexum nocrymna:
http://www.scientificamerican.com (zara obpamenus 10.11.2016).
21. Tutorialspoint [caifT|[DnexkTpoHHbId pecypc]. — Pexum npocrymna:

http://www.tutorialspoint.com/ (natra oopamenus 10.11.2016).
22. Short Essays (Economics, Politics, Law and Business) [DnekTpoHHBII

pecypc]. — 3aru. C JKpaHa. — Pexum JocTyna:
https://jennadoucet.wordpress.com (j1ata obpamenus 10.11.2016).
23. Gislounge [caiit] [OnexkTpoHHbIi pecypc]. — Pexum npocryma:

https://www.gislounge.com (zata ooparenus 10.11.2016).

24. Quora — The best answer to any question [DneKTpoHHBIN pecypc]. —
Pexxum noctyna: https://www.quora.com (nara oopamienust 10.11.2016).
25. The Guardian : Technology [DnextpoHHBI pecypc]. — Pexum
nocryma: https://www.theguardian.com/technology (mara oOpaieHus

10.11.2016).
26. Upwork — Hire Freelancers and Get Freelance Jobs Online
[DnexTpoHHBIN pecypc]. — Pexum goctyna: https:/www.upwork.com

(marta oopamenus 10.11.2016).
27. MynbTutpan [cioBapb| [DAEKTpOHHBIA pecypc]. — Pexum mocryna:
www.multitran.ru (mata obpamenus 14.11.2016).

168

http://techterms.com/
http://whatismyipaddress.com/
http://www.123helpme.com/
http://www.inetdaemon.com/tutorials
http://www.kean.edu/
http://www.nashnetworks.ca/
http://www.scientificamerican.com/
http://www.tutorialspoint.com/
https://jennadoucet.wordpress.com/
https://www.gislounge.com/
https://www.quora.com/
https://www.theguardian.com/technology
https://www.upwork.com/

YuebHoe 3JIeKTPOHHOE U3/IaHNE

Go For IT English Reading
Y4edHoe mocodone
10 AHIJIMHCKOMY SI3BIKY
s 6akanaBpoB 1—2 kypca
¢daxynpTeTa HHOOPMAITMOHHBIX CUCTEM
U TEXHOJIOTHI 04HOU (hOpMBbI 00yUEHHUS

Cocrasutenu: KOPYXOBA Jlronmuna BrnagumupoBHa
HOBOCEJIBLIEBA Hanexxnga HukomaeBHa

OU Ne 813. O0beM mannbix 2,48 MO. 3akaz DU 3.
Texuuueckuii penakrop FO. C. JlecHsik

JIP Ne 020640 ot 22.10.97.
[lewaTHOE M3aHKE
[Toamucano B mevars 01.12.2016. dopmar 60%84/16.
VYen. neu. 1. 10,00. Tupax 120 sx3. 3aka3 Ne 2.

VYIIbSIHOBCKUN IOCYJaPCTBEHHBIN TEXHUUYECKUN YHUBEPCUTET
432027, YnesuoBck, Ces. Bener, 32.
HIIK «Beneny» YnI'TVY, 432027, YuesiHoBck, Ces. Benerr, 32.
Ten.: (8422) 778-113
E-mail: venec@ulstu.ru
http://www.venec.ulstu.ru

	Windows 2
	Windows 3
	Windows 3.1
	Windows 95
	Windows 98
	Windows ME
	Windows 2000
	Windows XP
	Windows Vista
	Windows 7
	Windows 8
	Windows 10
	https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution
	Early Computing Machines and Inventors
	First Generation (1945–1956)

	http://whatismyipaddress.com/wi-fi
	TEXT 11 HOW DOMAIN NAME SERVERS WORK
	SDLC Activities

	(3,903 symbols)
	http://www.tutorialspoint.com/software_engineering/software_development_life_cycle.htm
	Black-Box Testing
	White-Box Testing
	Grey-Box Testing
	A Comparison of Testing Methods
	What is web design?
	What is web development?
	Popular types of DBMSes
	Advantages of a DBMS
	Overview of Oracle Grid Architecture.
	Grid Computing Defined

	Top IoT skills on the rise
	Developing an IoT device or distributed IoT service
	IOT hardware & operating systems
	Embedded eyes and ears: sensor and beacon technology
	IoT software & programming languages
	IOT data and security considerations
	High-level, readable, and efficient
	Beloved by data scientists
	Python basics
	Popular Python frameworks
	The Python developer’s toolbox
	The IT security chain
	Network security: the best defenses
	Endpoint security: securing the weakest link
	Internet security: guarding against cyber crimes
	Cloud security: protecting data that’s here, there, and everywhere
	Application security: coding apps to be safe from the ground up
	What is encryption and how does it work?
	Encrypting data “In transit” vs. Data “At rest”
	What is key management and why is it important?

	From the LAMP era to the Cloud
	A shift in the software stack status quo?
	What are some of the key drivers of this shift?
	1. Continuous deployment
	2. The CLOUD is creating a new foundation
	3. Integration is simplified
	4. Elasticity and affordable scalability
	5. Flexibility and customization
	6. Real-time communication and collaboration
	7. Divvying up work between larger teams and distributed teams

	So what are the main platforms shaking up the stack landscape?
	Understanding the back end: adding function to form

	Back-end development basics
	The back-end developers’ toolbox
	Server-side programming languages and frameworks
	Back-end software stacks
	Two common stacks:
	Black-box testing – тестирование по стратегии черного ящика
	V-model – V-модель (разработка через тестирование)

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 168
 Font: Times-Roman 13.0 point
 Origin: bottom centre
 Offset: horizontal 0.00 points, vertical 62.36 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 1
 0

 BC

 1
 3
 TR
 1
 0
 228
 291

 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 13.0000

 Both
 3
 SubDoc
 168

 CurrentAVDoc

 [Sys:ComputerName]
 0.0000
 62.3622

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 2
 169
 167
 166

 1

 HistoryList_V1
 qi2base

